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A popular class of problems in statistics deals with estimating the support of a density from n
observations drawn at random from a d-dimensional distribution. In the one-dimensional case,
if the support is an interval, the problem reduces to estimating its end points. In practice, an
experimenter may only have access to a noisy version of the original data. Therefore, a more
realistic model allows for the observations to be contaminated with additive noise.

In this paper, we consider estimation of convex bodies when the additive noise is distributed
according to a multivariate Gaussian (or nearly Gaussian) distribution, even though our tech-
niques could easily be adapted to other noise distributions. Unlike standard methods in decon-
volution that are implemented by thresholding a kernel density estimate, our method avoids
tuning parameters and Fourier transforms altogether. We show that our estimator, computable
in (O(logn))(d−1)/2 time, converges at a rate of Od(log logn/√logn) in Hausdorff distance, in
accordance with the polylogarithmic rates encountered in Gaussian deconvolution problems.
Part of our analysis also involves the optimality of the proposed estimator. We provide a lower
bound for the minimax rate of estimation in Hausdorff distance that is Ωd(1/ log2 n).
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1. Preliminaries

1.1. Introduction

The problem of estimating the support of a distribution, given i.i.d. samples, poses both
statistical and computational questions. When the support of the distribution is known to
be convex, geometric methods have been borrowed from stochastic and convex geometry
with the use of random polytopes since the seminal works [16, 17]. When the distribution
of the samples is uniform on a convex body, estimation in a minimax setup has been
tackled in [14] (see also the references therein). There, the natural estimator defined as
the convex hull of the samples is shown to attain the minimax rate of convergence on
the class of convex bodies, under the Nikodym metric.

When the samples are still supported on a convex body but their distribution is no
longer uniform, [2] studies the performance of the convex hull of the samples as an
estimator of the convex support under the Nikodym metric, whereas [4] focuses on the
Hausdorff metric. In the latter, computational issues are addressed in higher dimensions.
In particular, determining the list of vertices of the convex hull of n points in dimension
d ≥ 2 is very expensive, namely, exponential in d logn (see [5]). Consequently, in [4], a
randomized algorithm produces an approximation of the convex hull of the samples that
achieves a trade-off between computational cost and statistical accuracy.

Both of the aforementioned works [2, 4] assume that one has access to direct samples.
Here, we are interested in the case when the samples are contaminated, more specifically,
subject to measurement errors. In [15], a closely related problem is studied, where two
independent contaminated samples are observed, and one wants to estimate the set where
f − g is positive, where f and g are the respective densities that generated the batches
of samples. In that work, the contamination is modeled as an additive noise with known
distribution, and some techniques borrowed from inverse problems are used. The main
drawback is that the estimator is not tractable and it only gives a theoretical benchmark
for minimax estimation.

Goldenshluger and Tsybakov [10] study the problem of estimating the endpoint of a
univariate distribution, given samples contaminated with additive noise. Their analy-
sis suggests that their estimator is optimal in a minimax sense and its computation is
straightforward. In our work, we first extend their result in one dimension to handle a
broader class of data distributions, and then we lift it to a higher dimensional setup—
that of estimating the convex support of a uniform distribution, given samples that are
contaminated with additive noise. Our method relies on projecting the data points along
a finite collection of unit vectors. Unlike in [15], we give an explicit form for our estima-
tor. In addition, our estimator is tractable when the ambient dimension is not too large.
If the dimension is too high, the number of steps required to compute a membership
oracle for our estimator (i.e., evaluate the indicator function of the estimator at any
given point of the space) becomes exponentially large in the dimension, namely, of order
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(O(logn))(d−1)/2. When the additive noise is Gaussian, we prove upper and lower bound
on the minimax risk of estimation of the support, both of which are polylogarithmic in
the sample size.

1.2. Notation

In this work, d ≥ 2 is a fixed integer standing for the dimension of the ambient Euclidean
space Rd. The Euclidean ball with center a ∈ Rd and radius r ≥ 0 is denoted by Bd(a, r).
The Euclidean inner product between two vectors u and v in Rd is denoted by ⟨u, v⟩. The
unit sphere in Rd is denoted by Sd−1 and κd stands for the volume of the unit Euclidean
ball.

We refer to convex and compact sets with nonempty interior in Rd as convex bodies. The
collection of all convex bodies in Rd is denoted by Kd. Let σ2 > 0 and n ≥ 1. If X1, . . . ,Xn

are i.i.d. random uniform points in a convex body G and ε1, . . . , εn are i.i.d., we denote by
PG the joint distribution of X1+ε1, . . . ,Xn+εn and by EG the corresponding expectation
operator (we omit the dependency on n for simplicity).

The support function of a convex set G ⊆ Rd is defined as hG(u) = sup
x∈G

⟨u,x⟩, u ∈ Rd,

where ⟨⋅, ⋅⟩ is the canonical scalar product in Rd—it is the largest signed distance between
the origin and a supporting hyperplane of G orthogonal to u.

The Hausdorff distance between two sets A,B ⊆ Rd is dH(A,B) = inf{ε > 0 ∶ G1 ⊆

G2 + εBd(0,1) and G2 ⊆ G1 + εBd(0,1)}. If A and B are convex bodies, it can be written
in terms of their support functions: dH(A,B) = sup

u∈Sd−1
∣hA(u) − hB(u)∣.

For f in L1(Rd), let F[f](t) = ∫
Rd
ei⟨t,x⟩f(x)dx denote the Fourier transform of f .

The total variation distance between two distributions P and Q having densities p and
q with respect to a dominating measure µ is defined by TV(P,Q) = 1

2 ∫ ∣p − q∣dµ.

The Lebesgue measure of a measurable, bounded set A in Rd is denoted by ∣A∣. For a

vector x = (x1, x2, . . . , xd) ∈ Rd, we define ∥x∥ = (∑
d
i=1 ∣xi∣

2)
1/2

and ∥x∥∞ = sup1≤i≤d ∣xi∣.
For a function, f defined on a set A, let ∥f∥∞ = supx∈A ∣f(x)∣. The Nikodym distance
between two measurable, bounded sets A and B is defined by d∆(A,B) = ∣A∆B∣, where
A∆B is the symmetric difference between A and B. We let φσ denote the Gaussian

density with mean zero and variance σ2, i.e., φσ(x) =
1√
2πσ

e−x
2/(2σ2) for all x ∈ R.

We use standard big-O notations: For any positive sequences {an} and {bn}, an = O(bn)
or an ≲ bn if an ≤ Cbn for some absolute constant C > 0, an = o(bn) or an ≪ bn if
liman/bn = 0. Finally, we write an ≍ bn or an = Θ(bn) when both an ≳ bn and an ≲ bn
hold. Furthermore, the subscript in an = Or(bn) means an ≤ Crbn for some constant Cr
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depending on the parameter r only. We write an ∝ bn when an = Cbn for some absolute
constant C.

1.3. Model and outline

In what follows, we consider the problem of estimating a convex body from noisy obser-
vations. More formally, suppose we have access to independent observations

Yj =Xj + εj , j = 1, . . . , n, (1)

where X1, . . . ,Xn are i.i.d. uniform random points in an unknown convex body G and
ε1, . . . , εn are i.i.d. Gaussian random vectors with zero mean and covariance matrix σ2I,
independent of X1, . . . ,Xn. In the sequel, we assume that σ2 is a fixed and known positive
number. The goal is to estimate G using Y1, . . . , Yn. This can be seen as an inverse
problem: the object of interest is a special feature (here, the support) of a density that is
observed up to a convolution with a Gaussian distribution. Our approach will not follow
the usual path of inverse problems, but instead, will be essentially based on geometric
arguments. As we will see, our method is robust to some type of misspecification of both
the uniform distribution on G and the distribution of the noise.

The error of an estimator Ĝ of G is defined as EG [dH(Ĝ,G)]. Let C ⊆ Kd be a subclass

of the class of all convex bodies in Rd. The risk of an estimator Ĝ on the class C is
sup
G∈C

EG [dH(Ĝ,G)] and the minimax risk on C is defined as

Rn(C) = inf
Ĝ

sup
G∈C

EG [dH(Ĝ,G)] ,

where the infimum is taken over all estimators Ĝ based on Y1, . . . , Yn. The minimax rate
on the class C is the speed at which Rn(C) goes to zero.

As we mentioned earlier, our strategy for estimating G avoids standard methods from
inverse problems that would require Fourier transforms and tuning parameters. To give
intuition for our procedure, first observe that a convex set can be represented in terms
of its support function via

G = {x ∈ Rd ∶ ⟨u,x⟩ ≤ hG(u) for all u ∈ Sd−1
}.

If we can find a suitable way of estimating hG, say by ĥn, then there is hope that an
estimator of the form

Ĝ = {x ∈ Rd ∶ ⟨u,x⟩ ≤ ĥn(u) for all u ∈ Sd−1
} (2)

will perform well. This is the core idea of our procedure: We project the data points
Y1, . . . , Yn along unit vectors and for all such u ∈ Sd−1, we estimate the endpoint of the
distribution of ⟨u,X1⟩, given the one-dimensional sample ⟨u,Y1⟩, . . . , ⟨u,Yn⟩.
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Section 2 is devoted to the study of the one-dimensional case, where we extend the
results proven in [10]. The one-dimensional case reduces to estimating the end-point of
a univariate density. This problem has been extensively studied in the noiseless case
[6, 11] and more recently as an inverse problem [10, 12]. In [10], it is assumed that the
density of the (one-dimensional) Xj ’s is exactly equal to a polynomial in a neighborhood
of the endpoint of the support. We extend their results to the case when the distribution
function is only bounded by two polynomials whose degrees may differ in the vicinity of
the endpoint.

In Section 3, we use these one-dimensional results to provide theory for our estimator of
the support G, if the Xj ’s are drawn uniformly from a convex set, and to bound its risk
on a certain subclass of Kd. The main case of interest is when the noise terms are nearly
Gaussian. When the noise distribution is exactly Gaussian, we show that our estimator
nearly attains the minimax rate on that class, up to logarithmic factors.

Intermediate lemmas and proofs of corollaries are deferred to the supplementary mate-
rial [3].

2. Estimation of the endpoint of a distribution with
contaminated samples

2.1. Preliminary bounds

Let ε1, . . . , εn be i.i.d. random variables with some density φ on R. Then, under some
assumption on the right tail of φ, the maximum max1≤j≤n εj concentrates around some
large value: For instance, if φ is a Gaussian density with vairance σ2 > 0, that value
is

√
2σ2 logn. In this section, we prove that adding i.i.d. nonpositive random variables

to the εj ’s does not affect this concentration, as long as their cumulative distribution
function increases polynomially to 1 near zero. As a byproduct, we get a guarantee for
the estimation of the endpoint of a distribution, given contaminated samples.

Theorem 1. Let X be a random variable on (−∞,0) with its cdf F satisfying

L−1tα ≤ 1 − F (−t) ≤ Ltβ ,

for all t ∈ [0, r], where L, r > 0 and α ≥ β > 0. Let ε be a real valued random variable,
independent of X, with density φ with respect to the Lebesgue measure. Let G be the cdf
of X + ε. In each of the following cases, C1 and C2 are positive constants that depend on
the stated parameters.

(i) If, for some positive constants A,γ, x0, c,C,

ce−Ax
γ

≤ φ(x) ≤ Ce−Ax
γ

, ∀x ≥ x0,
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6 Brunel, Klusowski, Yang

then for all x ≥ max(x0, r),

C1
e−Ax

γ

x(γ−1)(α+1) ≤ 1 −G(x) ≤ C2
e−Ax

γ

x(γ−1)(β+1) .

(ii) If, for some positive constants x0, c,C, and γ > 1,

cx−γ ≤ φ(x) ≤ Cx−γ , ∀x ≥ x0,

then for all x ≥ max(x0, r),

C1

xγ−1
≤ 1 −G(x) ≤

C2

xγ−1
.

(iii) If there is a real number Q, a nonnegative constant γ ≥ 0 and positive constants
c,C, and x0 such that φ(x) = 0 for all x ≥ Q and

c(Q − x)γ ≤ φ(x) ≤ C(Q − x)γ , ∀x ∈ [Q − x0,Q],

then, G(x) = 1 for all x ≥ Q and, if max(Q − x0,Q − r) ≤ x ≤ Q, then

C1(Q − x)γ+α+1
≤ 1 −G(x) ≤ C2(Q − x)γ+β+1.

In Case (i), a distribution for ε with γ = 2 has a nearly Gaussian right tail, whereas for
γ = 1, its right tail is nearly exponential. In (ii), a distribution with γ = 2 has a nearly
Cauchy right tail. Case (iii) with γ = 0 includes uniform, or nearly uniform distributions
on segments of the form [Q̃,Q] for some Q̃ ≤ Q.

Proof.

Case (i) Let x ≥ max(x0, r). Then,

1 −G(x) = ∫
∞

0
(1 − F (−t))φ(x + t)dt

= ∫

r

0
(1 − F (−t))φ(x + t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

+∫

∞

r
(1 − F (−t))φ(x + t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

. (3)

In both integrals, we can use the assumption on φ, since x + t is always larger or equal
to x0. In the first integral, we can also use the assumption on F :

I ≤ LC ∫
r

0
tβe−A(x+t)γ dt

= LCe−Ax
γ

∫

r

0
tβe−A((x+t)γ−xγ) dt.
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Now, for all x ≥ r and t ∈ (0, r), a Taylor expansion yields the existence of u ∈ (0, t)
(hence, u < x), such that (x + t)γ − xγ = γt(x + u)γ−1. Thus, if γ ≥ 1, then

γtxγ−1
≤ (x + t)γ − xγ ≤ 2γ−1γtxγ−1, (4)

and if γ < 1, these inequalities are reversed, i.e.,

2γ−1γtxγ−1
≤ (x + t)γ − xγ ≤ γtxγ−1. (5)

In any case, for some c1 > c0 > 0, we get that

c0tx
γ−1

≤ (x + t)γ − xγ ≤ c1tx
γ−1. (6)

I ≤ LCe−Ax
γ

∫

r

0
tβe−c0tx

γ−1
dt

≤ LCe−Ax
γ

∫

∞

0
tβe−c0tx

γ−1
dt

= LC
e−Ax

γ

(c0xγ−1)
β+1 ∫

∞

0
tβe−t dt

≤
LCΓ(β + 1)

cβ+1
0

e−Ax
γ

x(γ−1)(β+1) , (7)

where Γ(⋅) is Euler’s Gamma function.

On the other hand, a similar sequence of inequalities yields that

I ≥ L−1c∫
r

0
tβe−A(x+t)γ dt (8)

≥ L−1c
e−Ax

γ

(c1xγ−1)
α+1 ∫

c1rx
γ−1

0
tαe−t dt

≥
L−1c

cα+1
1

(∫

c1r
γ

0
tαe−t dt)

e−Ax
γ

x(γ−1)(α+1) , (9)

where c1 was defined in (6). Now, let us bound the second integral in (3). Since it is
already nonnegative, we only bound it from above. Since 0 ≤ F (u) ≤ 1, for all u ∈ R,

II ≤ ∫
∞

r
φ(x + t)dt

≤ C ∫
∞

r
e−A(x+t)γ dt. (10)

Assume that γ ≥ 1. Then, for all x, t ≥ r, a Taylor expansion yields that (x + t)γ − xγ ≥
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γtxγ−1. Thus,

II ≤ Ce−Ax
γ

∫

∞

r
e−Aγtx

γ−1
dt

= Ce−Ax
γ e−Aγrx

γ−1

Aγxγ−1

=
C

Aγ

e−Ax
γ

x(γ−1)(β+1) e
−Aγrxγ−1+(γ−1)β logx

≤
Ce−β+β log β

Aγr

Aγ

e−Ax
γ

x(γ−1)(β+1) . (11)

Now, if γ < 1, let III = ∫
∞
r e−A(x+t)γ dt. Then, by an integration by parts,

III = ∫
∞

x+r
e−At

γ

dt

=
e−A(x+r)γ

γA(x + r)γ−1
+

1 − γ

γA
∫

∞

x+r

1

tγ
e−At

γ

dt

≤
e−A(x+r)γ

γA(x + r)γ−1
+

1 − γ

γA(x + r)γ
III

≤
e−A(x+r)γ

γA(x + r)γ−1
+ (1/2)III,

when x is large enough. This yields

III ≤
2e−A(x+r)γ

γA(x + r)γ−1
≤
C̃e−Ax

γ

xγ−1
≤

C̃e−Ax
γ

x(γ−1)(β+1) , (12)

for some positive constant C̃, and (10) yields

II ≤ C ′ e−Ax
γ

x(γ−1)(β+1) , (13)

for some positive constant C ′. All together, (3), (10), (12) and (13) imply the desired
result.

Case (ii) For all x ≥ max(x0, r),

1 −G(x) = ∫
∞

0
(1 − F (−t))φ(x + t)dt

≤ ∫

∞

0
φ(x + t)dt

≤ C ∫
∞

0
(x + t)−γ

≤
C

γ − 1

1

xγ−1
.
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On the other hand,

1 −G(x) ≥ ∫
∞

r
(1 − F (−t))φ(x + t)dt

≥ (1 − F (−r))∫
∞

r
φ(x + t)dt

≥ L−1r−αc∫
∞

r
(x + t)−γ

=
L−1r−αc

γ − 1

1

(x + r)γ−1

≥
CγL

−1r−αc

γ − 1

1

(x + r)γ−1
,

where Cγ = 1 if γ < 1 and Cγ = 2γ−1 if γ ≥ 1.

Case (iii) Let x ≥ max(Q − x0,Q − r).

1 −G(x) = ∫
Q−x

0
(1 − F (−t))φ(x + t)dt

≤ LC ∫
Q−x

0
tβ(Q − x − t)γ dt

= LC(Q − x)γ+β+1
∫

1

0
uβ(1 − u)γ du

and similarly,

1 −G(x) ≥ L−1c(Q − x)γ+α+1
∫

1

0
uα(1 − u)γ du.

As a consequence of Theorem 1, we get the following deviation bounds for the extreme
statistics of i.i.d. samples.

Theorem 2. Let F be a cdf on R such that L−1tα ≤ 1 − F (−t) ≤ Ltβ, for all t ∈ [0, r],
where L, r > 0 and α ≥ β > 0. Let φ be a density on R with ce−Ax

γ

≤ φ(x) ≤ Ce−Ax
γ

for all x ≥ x0, where A,x0, c,C are positive constants and γ ≥ 1. Let ε be a random
variable with density φ, independent of X and let Y =X + ε. Let Y1, Y2, . . . be a sequence
of i.i.d. copies of Y . For n ≥ 1, let Mn = max(Y1, . . . , Yn) and bn = (A−1 logn)1/γ . Then,
there exist positive constants c0, c1, c2, c3 and a positive integer n0, which only depend on
L, c,α, β, γ, such that for all n ≥ n0 and for all t ≥ 0,

P [∣Mn − bn∣ >
t + c0 log(bn)

bγ−1
n

] ≤ c1e
−c2t + e−c3n.
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Proof. Let n ≥ 1 such that bn ≥ max(x0, r). Then, by Theorem 1, for all x ≥ 0,

G(bn + x) ≥ 1 −C2
e−A(bn+x)γ

(bn + x)(γ−1)(β+1)

≥ 1 −
C2

b
(γ−1)(β+1)
n

e−Ab
γ
ne−A((bn+x)γ−bγn) (14)

≥ 1 −
C2

n
e−Aγxb

γ−1
n ,

hence, so long as C2/n ≥ 1/2,

G(bn + x)
n
≥ 1 − (2 log 2)Ce−Aγxb

γ−1
n , (15)

where we used the fact that for u ∈ [0,1/2], log(1−u) ≤ 2(log 2)u and for v ∈ R, ev ≥ 1+v.

Now, if bn − x ≥ max(x0, r), Theorem 1 yields

G(bn − x) ≤ 1 −C1
e−A(bn−x)γ

(bn − x)(γ−1)(α+1)

≤ 1 −
C1

b
(γ−1)(α+1)
n

e−Ab
γ
neA(bγn−(bn−x)

γ)

= 1 −
C1

nb
(γ−1)(α+1)
n

eAb
γ
n(1−(1−x/bn)

γ) (16)

≤ 1 −
C1

nb
(γ−1)(α+1)
n

eAxb
γ−1
n

= 1 −
C1

n
eAxb

γ−1
n −(γ−1)(α+1) log bn .

Therefore, using (1 − u/n)n ≤ e−u ≤ 1/u, for all u > 0,

G(bn − x)
n
≤

1

C1
e−Axb

γ−1
n +(γ−1)(α+1) log bn . (17)

If bn − x ≤ max(x0, r) =∶M , then since G is nondecreasing, G(bn − x)
n ≤ G(M)n ≤ e−c3n,

where c3 = − log(1 −
C1e

−AMγ

M (γ−1)(α+1) ). Finally, for all x ≥ 0, using (15) and (17),

P [∣Mn − bn∣ > x] = P [Mn > bn + x] + P [Mn < bn − x]

= 1 −G(bn + x)
n
+G(bn − x)

n

≤ (2 log 2)Ce−Aγxb
γ−1
n +

1

C1
e−Axb

γ−1
n +(γ−1)(α+1) log bn + e−c3n

≤ (2C log 2 +C−1
1 )e−Axb

γ−1
n +(γ−1)(α+1) log bn + e−c3n. (18)

Take x of the form x =
t +A−1(γ − 1)(α + 1) log bn

bγ−1
n

, for t ≥ 0. Then, (18) implies the

desired result, with c0 = A
−1(γ − 1)(α + 1), c1 = 2C log 2 +C−1

1 and c2 = A.
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When α = β, it is possible to improve the bound of Theorem 2 by a log-log factor.

Theorem 3. Let the assumptions of Theorem 2 hold with α = β. Set b̃n =

(A−1 logn)
1
γ (1 −

(γ − 1)(α + 1)

γ2

log logn

logn
). Then, there exist n0 ≥ 1 and c1, c2 > 0 that

depend on α, L, r,A and x0 only, such that for all n ≥ n0 and t > 0,

P [∣Mn − b̃n∣ >
t

b̃γ−1
n

] ≤ c1e
− t

2σ2 + e−c2n.

Proof. The proof of Theorem 3 follows the same lines as that of Theorem 2, where bn
is replaced with b̃n. In the lower bound of G(b̃n + x), (14) becomes

G(bn + x) ≥ 1 −C2e
−Aγxb̃γ−1n −Abγn+(γ−1)(α+1) log b̃n

and in the upper bound of G(b̃n − x), (16) becomes

G(b̃n − x) ≤ 1 −C1e
Aγxb̃γ−1n −Abγn+(γ−1)(α+1) log b̃n .

The next step consists of showing that logn −B ≤ Abγn + (γ − 1)(α + 1) log b̃n ≤ logn +B,
for some positive number B, and for all n larger than some given integer n0. Let u =
(γ − 1)(α + 1)

γ2

log logn

logn
and let n0 be the smallest integer such that u ≤ 1/2, for all

n ≥ n0 (since u ≤
(γ−1)(α+1)
γ2

√
logn

, one can take any n0 ≥ e4(γ−1)2(α+1)2/γ4

). Then, − log 2 ≤

log(1−u) ≤ 0 and, by a Taylor expansion, 1−γu−Cγu
2 ≤ (1−u)γ ≤ 1−γu−Cγu

2, where

Cγ =
γ(γ − 1)

2
max (1,22−γ). The result follows easily.

Finally, similarly to (18), we get:

P [∣Mn − bn∣ > x] = P [Mn > bn + x] + P [Mn < bn − x]

≤ Ce−Aγxb
γ−1
n + e−c

′n

for some positive constants C, c and n ≥ n0, hence, taking x of the form x =
t

b̃γ−1
n

, for

t ≥ 0, yields Theorem 3.

When the noise distribution has lighter tails, the extreme statistics concentrates faster,
which is quantified in the next bound.

Theorem 4. Let F be a cdf on R such that L−1tα ≤ 1 − F (−t) ≤ Ltβ, for all t ∈ [0, r],
where L, r > 0 and α ≥ β > 0. Let φ be a density on R with φ(x) = 0 for all x ≥ Q
and c(Q− x)γ ≤ φ(x) ≤ C(Q− x)γ for all x ∈ [Q− x0,Q], where γ,Q,x0, c,C are positive
constants. Let ε be a random variable with density φ, independent of X and let Y =X+ε.
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12 Brunel, Klusowski, Yang

Let Y1, Y2, . . . be a sequence of i.i.d. copies of Y . Then, for all positive integers n and
t ∈ [0, n1/(γ+α+1) min(r, x0)],

P [Mn < Q − tn−
1

γ+α+1 ] ≤ e−C1t
γ+α+1

,

where C1 is the constant appearing in Case (iii) of Theorem 1.

Proof. The proof is straightforward, using Case (iii) of Theorem 1. Indeed, for all x ∈

[0,min(r, x0)],

P [Mn < Q − x] = G(Q − x)n

≤ (1 −C1x
γ+α+1)

n

≤ e−C1nx
γ+α+1

.

Remark 1. Note that when the noise distribution satisfies Case (ii) of Theorem 1, the
extreme statistic Mn does not concentrate around its expected value. Indeed, it is easy to
see that its variance will explode as n→∞; more precisely, it will be of order n2/(γ−1).

2.2. Statistical consequences

Here, we use the previous bounds in order to estimate the endpoint of an unknown
distribution, given that its decay near the endpoint is polynomial.

For any cdf F on R, let θF be its endpoint, i.e., θF = inf{t ∈ R ∶ F (t) = 1} ∈ R ∪ {∞}. For
r,L > 0, let F(r,L) be the class of all cdf’s F with θF <∞ and such that L−1tα ≤ 1−F (θF−
t) ≤ Ltβ , ∀t ∈ [0, r], for some (unknown) α ≥ β ≥ 0. For a fixed α ≥ 0, we also denote by
F(r,L,α) the class of all cdf’s F with θF <∞ and such that L−1tα ≤ 1−F (θF − t) ≤ Lt

α,
∀t ∈ [0, r].

Let φ be a density on R and F be a cdf on R. Let X be a random variable with cdf F
and ε a random variable with density φ. Set Y =X + ε, and let Y1, . . . , Yn be i.i.d. copies
of Y . Based on the observation of Y , let us estimate θF , given that F ∈ F(r,L) (resp.
F ∈ F(r,L,α)), for some known r,L > 0 (resp. for some known r,L > 0 and α ≥ 0).

We assume that it is known that φ satisfies either Case (i) with γ > 1 or Case (iii) of

Theorem 1, with known parameters A,γ,R. We define the estimator θ̂ =Mn − bn, where
Mn = max(Y1, . . . , Yn) and

bn =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(A−1 logn)
1/γ

in Case (i) and when F ∈ F(r,L);

(A−1 logn)
1/γ

(1 − (γ−1)(α+1)
γ2

log logn
logn

) in Case (i) and when F ∈ F(r,L,α);

Q in Case (iii).
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Estimation of convex supports from noisy measurements 13

In the next corollary, we denote by EF the expectation taken over the random variables
Y1, . . . , Yn that are copies of Y =X + ε, when X has cdf F .

Corollary 1.

1. Using the first case of bn described above,

sup
F ∈F(r,L)

EF [∣θ̂ − θF ∣] ≲
log logn

(logn)
γ−1
γ

.

2. Using the second case of bn described above,

sup
F ∈F(r,L,α)

EF [∣θ̂ − θF ∣] ≲
1

(logn)
γ−1
γ

.

3. Using the third case of bn described above,

sup
F ∈F(r,L,α)

EF [∣θ̂ − θF ∣] ≲ n−
1

γ+α+1 .

When φ is a centered Gaussian density, Theorem 2 in [10] suggests that the upper bound
in Corollary 1 is optimal, up to a sublogarithmic factor. However, their result is only for
a modified version of the model (where the hypothesis space consists of densities defined
in terms of the convolution Y =X + ε instead of X) and hence does not actually show a
lower bound for a hypothesis space that is consistent with the one used for their upper
bound.

As a conclusion, our results suggest that in the presence of unbounded errors, the end-
point θF of the distribution of the contaminated data can only be estimated at a poly-
logarithmic rate, in a minimax sense. In fact, in Section 3.3, we prove a lower bound in
a multivariate setup for the Gaussian error case, whose rate is polylogarithmic in the
sample size.

3. Application to convex support estimation from
noisy data

In this section, we apply Theorems 2 and 4 to the problem of estimating a convex body
from noisy observations of independent uniform random points. Let G be a convex body
in Rd and letX be uniformly distributed onG. Let ε ∈ Rd be a random vector independent
of X and let Y =X+ε. From n i.i.d. copies Y1, . . . , Yn of Y , our goal is to recover G. Here,
we only consider two different distributions for the noise ε. First, we consider the case
when ε is a centered Gaussian random variable with covariance matrix σ2I, where I is the

imsart-bj ver. 2014/10/16 file: convex-bernoulli.tex date: April 21, 2020



14 Brunel, Klusowski, Yang

d× d identity matrix and σ2 > 0 is known. By Theorem 1, it is straightforward to extend
the results to nearly Gaussian noise ε, i.e., when the densities of its one-dimensional
projections have a nearly Gaussian right tail. Second, we consider the case when ε is
uniformly (or nearly uniformly) distributed in some known Euclidean ball. Again, by
Theorem 1, this can be very easily extended to an error distribution supported on a
known Euclidean ball, with a density that decays at some known rate to zero near the
boundary.

Our estimation scheme consists in reducing the d-dimensional estimation problem to a
one-dimensional one, based on the following observation. Let u ∈ Sd−1. Then, ⟨u,Y ⟩ =

⟨u,X⟩ + ⟨u, ε⟩ and:

• ⟨u, ε⟩ is a one-dimensional noise distribution, which is easy to characterize;

• hG(u) is the endpoint of the distribution of ⟨u,X⟩.

In the sequel, we denote by Fu the cumulative distribution function of ⟨u,X⟩. Consider
the following assumption, which entails the next lemma.

Assumption 1. Bd(a, r) ⊆ G ⊆ Bd(0,R), for some a ∈ Rd.

For brevity, the next lemma is proved in the supplementary material [3].

Lemma 1. Let G satisfy Assumption 1. Then, for all u ∈ Sd−1, θFu = hG(u) and

Fu ∈ F(r,L), where L = (2R)
d−1rdκdmax(1,

d

rd−1κd−1
).

More precisely, the values of α and β in the definition of F(r,L) corresponding to Fu are
α = d and β = 1.

As a consequence of Lemma 1, projecting the data Yj , 1 ≤ j ≤ n, on any direction brings
us back to the one-dimensional setup studied in Section 2, where the end point of the
corresponding distribution is the value of the support function of G in the direction of
the projection.

We now state two assumptions on the noise distribution, which broadly correspond to
the two cases that we consider in this section: (nearly) Gaussian and (nearly) uniform
on a Euclidean ball.

Assumption 2. There exist σ2 > 0 and positive constants c,C > 0 such that the follow-
ing holds. The noise term ε has a density φ on Rd which satisfies, for all x ∈ Rd,

ce−
∥x∥22
2σ2 ≤ φ(x) ≤ Ce−

∥x∥22
2σ2 .

Note that we never require c,C to be known, whereas we will always assume that σ2 is
known.
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Estimation of convex supports from noisy measurements 15

Assumption 3. There exist Q > 0, γ ≥ 0 and positive constants c,C > 0 such that
the following holds. The noise term ε has a density φ on Rd which satisfies, for all
x ∈ Bd(0,Q),

c(Q − ∥x∥2)
γ
≤ φ(x) ≤ C(Q − ∥x∥2)

γ

and φ(x) = 0 for x ∉ Bd(0,Q).

Here as well, note that we never require c,C to be known, whereas we will always assume
that Q and γ are known. The case γ = 0 corresponds to nearly uniform distributions on
Bd(0,Q).

We are now in a position to define an estimator of G. For u ∈ Rd, let ĥ(u) be the estimator

of hG(u) defined as ĥ(u) = max
1≤j≤n

⟨u,Yj⟩ − bn, where bn is given in the next theorem.

3.1. Nearly Gaussian noise

3.1.1. A general estimator

Consider the random convex set Ĝ = {x ∈ Rd ∶ ⟨u,x⟩ ≤ ĥ(u), ∀u ∈ Sd−1}. This estimator
satisfies the following deviation inequality.

Theorem 5. Let Assumption 2 hold. Set n0 = max (ee
2/(2σ2), e1/σ4

, e8R2/σ2

) and let

bn =
√

2σ2 logn. Then, for all convex bodies G that satisfy Assumption 1, for all integer
n ≥ n0 and for all positive number x with x ≤ rbn/2 − (2d/c2 + c0) log bn,

dH(Ĝ,G) ≤
3R

rbn
(2x + (2d/c2 + c0 + 3) log bn)

with probability at least 1 − 2 ⋅ 3d (c1e
−c2x +

√
2σ2e−c3n+d log logn

), where c0, c1, c2, c3 are

the positive constants given in Theorem 2.

Proof. Let bn =
√

2σ2 logn and let z > 0 and ε = (log bn)/b
2
n. Let N be an ε-net of Sd−1

and consider the event A = {∣ĥ(u) − h(u)∣ ≤ z, ∀u ∈ N ∪ −N}, where −N = {−u ∶ u ∈ N}.

Assume that the event A is satisfied. We use the following lemma (see [8]).

Lemma 2. Let ε > 0 and N be an ε-net of Sd−1. Then, for all u ∈ Sd−1, there are
sequences (uk)k≥0 ⊆ Sd−1 and (εk)k≥1 ⊆ [0,∞) such that u = u0+∑

∞
k=1 εkuk, with 0 ≤ εk ≤ ε

k

for all k ≥ 1.
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16 Brunel, Klusowski, Yang

Let u ∈ Sd−1, that we write as in Lemma 2, u = u0 + ∑
∞
k=1 εkuk. Note that ĥ is not

necessarily subadditive, however, the function h̃(v) ∶= ĥ(v) + bn∣v∣ = maxi=1,...,n⟨v, Yi⟩
is continuous and subadditive, since it is the support function of the convex hull of
Y1, . . . , Yn. Therefore, since h(v) ≤ R, for all v ∈ Sd−1,

ĥ(u) = h̃(u) − bn ≤ h̃(u0) +
∞
∑
k=1

εkh̃(uk) − bn = ĥ(u0) +
∞
∑
k=1

εk(ĥ(uk) + bn)

≤ h(u0) + z +
∞
∑
k=1

εk(h(uk) + z + bn) ≤ h(u0) +
z

1 − ε
+
εbn
1 − ε

+
∞
∑
k=1

εkh(uk)

≤ h(u) +
∞
∑
k=1

εk (h(−uk) + h(uk)) +
z

1 − ε
+
εbn
1 − ε

≤ h(u) +
2Rε

1 − ε
+

z

1 − ε
+
εbn
1 − ε

, (19)

where we used sub-additivity together with the fact that u0 = u +∑
∞
k=1 εk(−uk).

On the other hand, by noting that since the event Â holds, it is true that ĥ(−uk) ≤

h(−uk) + z ≤ R + z, for all k ≥ 0,

h(u) ≤ h(u0) +
∞
∑
k=1

εkh(uk)

≤ ĥ(u0) + z +
∞
∑
k=1

εkR ≤ h̃(u0) − bn + z +
Rε

1 − ε

≤ h̃(u) +
∞
∑
k=1

εkh̃(−uk) − bn + z +
Rε

1 − ε

= ĥ(u) +
∞
∑
k=1

εk (ĥ(−uk) + bn) + z +
Rε

1 − ε

≤ ĥ(u) +
∞
∑
k=1

εk (R + z + bn) + z +
Rε

1 − ε

≤ ĥ(u) +
2Rε

1 − ε
+

z

1 − ε
+
εbn
1 − ε

(20)

It follows from (19) and (20) that, if A holds, then, supu∈Sd−1 ∣ĥ(u)−h(u)∣ ≤
2Rε
1−ε +

z
1−ε+

εbn
1−ε .

If n ≥ n0, then ε ≤ b−1
n = (2σ2

√
logn)−1 ≤ 1/2 and 4R ≤ bn, so supu∈Sd−1 ∣ĥ(u) − h(u)∣ ≤

2z + 3εbn.

Finally, we use [1, Lemma 7], which we state here in a simplified form.

Lemma 3. Let δ ∈ (0,1/2] and N be a δ-net of Sd−1. Let G be a convex body in Rd and
hG its support function. Let a ∈ Rd and 0 < r ≤ R such that Bd(a, r) ⊆ G ⊆ Bd(a,R). Let

ĥ ∶ Sd−1 → R and ĜN = {x ∈ Rd ∶ ⟨u,x⟩ ≤ ĥ(u), ∀u ∈ N}. Let t = maxu∈N ∣ĥ(u) − hG(u)∣.

If t ≤ r/2, then dH(ĜN ,G) ≤
3tR

2r
+ 4Rδ.
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Estimation of convex supports from noisy measurements 17

Noting that Assumption 1 implies that B(a, r) ⊆ G ⊆ B(a,2R), by Lemma 3 with δ = 0,
the event A implies that

dH(Ĝ,G) ≤
6Rz

r
+

9Rεbn
r

,

so long as 2z + 3εbn ≤ r/2.

Therefore,

PG [dH(Ĝ,G) ≥
6Rz

r
+

9Rεbn
r

] ≤ 1 − PG[A]. (21)

Now, let us control the probability of the complement of A.

Combining Lemma 1 and Theorem 2 yields, for all u ∈ Sd−1, and all t ≥ 0,

PG [∣ĥ(u) − hG(u)∣ >
t + c0 log(bn)

bn
] ≤ c1e

− bnt
2σ2 + e−c2n, (22)

where the constants c1, c2 and c3 are given in Theorem 2 with α = d, β = 1, γ = 2 and
A = (2σ2)−1.

By a volumetric argument, #N ≤ (3/ε)d. Hence, for z of the form z =
t + c0 log bn

bn
, a

union bound yields that the event A holds with probability at least 1 − 3dδ, where

δ = 2c1e
−c2t−d log ε

+ 2c2e
−c3n−d log ε.

Finally, taking t = x + 2d
c2

log bn, for x ≥ 0, yields the desired result, by noting that

log log bn ≥ 0, since n ≥ ee
2/(2σ2).

Corollary 2. Let the assumptions of Theorem 5 hold. Then, the estimator Ĝ satisfies

sup
G∈Kr,R

EG[dH(Ĝ,G)] = O (
log logn
√

logn
) .

Proof. The proof is similar to Corollary 3.

3.1.2. A computable estimator

The estimator Ĝ that we defined in (2) is given by a polyhedral representation with
infinitely many constraints and, hence, it is not clear how to compute it in practice.
Here, we propose a modified version which is based on a discretization of the set of
polyhedral constraints.
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18 Brunel, Klusowski, Yang

Let M be a positive integer and U1, . . . , UM be independent uniform random vectors on
the sphere Sd−1 and define

ĜM = {x ∈ Rd ∶ ⟨Uj , x⟩ ≤ ĥ(Uj), ∀j = 1, . . . ,M}. (23)

We also define a truncated version of ĜM . Let µ̂n =
1
n ∑

n
j=1 Yj . Define

G̃M =

⎧⎪⎪
⎨
⎪⎪⎩

ĜM ∩Bd(µ̂n, logn) if ĜM ≠ ∅

{µ̂n} otherwise.
(24)

First, we give a deviation inequality for the estimator ĜM . As a corollary, we obtain an
upper bound on the risk of the truncated estimator G̃M for some prescribed value of M .

Theorem 6. Let Assumption 2 hold. Let n > 3, bn =
√

2σ2 logn and M be a positive
integer with (logM)/bn ≤ min(r/(4σ2),1/2). Then, there exist positive constants c0, c1, c2
and c3 such that the following holds. For all convex bodies G that satisfy Assumption 1,
for all positive x with x ≤ rbn

4σ2 − logM ,

dH(ĜM ,G) ≤ c0
x + logM

bn

with probability at least 1 − c1Me−x −Me−c2n − (6bn)
de−c3M(logM)d−1b−(d−1)n .

Proof. Let G satisfy Assumption 1. Combining Lemma 1 and Theorem 2, we have that
for all u ∈ Sd−1, and all t ≥ 0,

PG [∣ĥ(u) − hG(u)∣ > t] ≤ c1e
− bnt

2σ2 + e−c2n, (25)

with c1 and c2 as in Theorem 2 with α = d, β = 1, γ = 2 and A = (2σ2)−1. Hence, by a
union bound,

PG [ max
1≤j≤M

∣ĥ(Uj) − hG(Uj)∣ > t] ≤ c1Me−
bnt

2σ2 +Me−c2n. (26)

Let t < r/2. Consider the event A where U1, . . . , UM form a δ-net of Sd−1, where δ ∈

(0,1/2). By Lemma 3, if A holds and if ∣ĥ(Uj) − hG(Uj)∣ ≤ t for all j = 1, . . . ,M , then

dH(ĜM ,G) ≤ 3tR
r
+ 4Rδ. Hence, by (26) and Lemma 10 in [1],

PG [dH(ĜM ,G) >
3tR

r
+ 4Rδ]

≤ c1Me−
bnt

2σ2 +Me−c2n + 6d exp(−c3Mδd−1
+ d log (

1

δ
)) , (27)

where c3 = (2d8(d−1)/2)−1. Taking δ = (logM)/bn ends the proof of Theorem 6.
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Theorem 6 yields a uniform upper bound on the risk of G̃M , which we derive for a
special choice of M and state next as a corollary. For brevity, we defer the proof to the
supplementary material [3].

Corollary 3. Denote by Kr,R the collection of all convex bodies satisfying As-
sumption 1. Let the assumptions of Theorem 6 hold and set M = ⌊2d(d +

1)8(d−1)/2bd−1
n (log bn)

−(d−2)⌋. Then, the truncated estimator G̃M satisfies

sup
G∈Kr,R

EG[dH(G̃M ,G)] = O (
log logn
√

logn
) .

Remark 2. Suppose that for all x ∈ ∂G, there exist a, b ∈ Rd such that Bd(a, r) ⊆ G ⊆

Bd(b,R), x ∈ Bd(a, r) and x ∈ ∂Bd(b,R). In particular, this means that the complement
of G has reach at least r, i.e., one can roll a Euclidean ball of radius r inside G along its
boundary (see, e.g., [19, Definition 11]). In addition, G can roll freely inside a Euclidean
ball of radius R, along its boundary. This ensures that for all u ∈ Sd−1, the random
variable ⟨u,X⟩−hG(u) satisfies the assumption of Theorem 3 with α = β = (d+ 1)/2 and
some L > 0 that depends on r and R only. Hence, we are in the case where α = β in
Theorem 3, which shows that the rate of estimation of the support function of G at a
single unit vector can be improved by a sublogarithmic factor. However, a close look at
the proof of Theorem 6 suggests that a sublogarithmic factor is still unavoidable with our
current proof technique, because of the union bound on a covering of the unit sphere.

Remark 3. Theorem 6 can be easily extended to cases where the Xj’s are not uniformly
distributed on G. What matters for the proof is that, uniformly over unit vectors u, the
cumulative distribution function Fu of ⟨u,X⟩ − hG(u) increases polynomially near zero.
Examples of such distributions are given in [4].

Remark 4. Note that in general, the estimate ĥ defined above is not a support function.
In particular, it is not enough to control the differences ĥ(Uj) − hG(Uj), j = 1, . . . ,M in

order to obtain a bound on the Hausdorff distance between ĜM and G.

3.2. Nearly uniform noise

Recall that a crucial aspect of our analysis is that ⟨u, ε⟩ (i.e., the projection of the noise
along a direction) has a density with known decay (e.g., Gaussian densities) that we
can analyze. For example, a desirable property of Gaussian errors ε is that ⟨u, ε⟩ is also
distributed Gaussian and is independent of the direction u. Other simplifications hold for
other spherically symmetric or stable distributions, but a separate analysis is required
to extract the correct asymptotic bias bn. Hence, the general techniques that we have
developed so far can also be extended to other noise distributions, provided they are
amenable to analysis. Another case of interest is when the noise terms are bounded and
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nearly uniform on a ball. More specifically, let G satisfy Assumption 1 and suppose that
ε satisfies Assumption 3, where Q > r is known. We can take bn = Q and set

ĥn(u) = max
1≤j≤n

⟨u,Yj⟩ −Q

to form the estimator Ĝ. The next set of results provide statistical guarantees for this
estimator.

Theorem 7. Let Assumption 3 hold. Let n ≥ 1 and bn = Q. Then, there exists a positive
constant C1 such that the following holds. For all convex bodies G that satisfy Assumption
1, for all positive x, if x ≤ r/8,

dH(Ĝ,G) ≤
12Rx

r

with probability at least 1 − 2 ⋅ 3d(2 +Q/R)de−C1nx
γ+α+1−d logx.

Proof. The proof follows the same lines as Theorem 3. Let A and N be the sets defined
in the proof of Theorem 5. From (19) and (20), if A holds, then, supu∈Sd−1 ∣ĥ(u)−hG(u)∣ ≤
2Rε
1−ε +

z
1−ε +

εQ
1−ε . Furthermore, if ε ≤ 1/2, then supu∈Sd−1 ∣ĥ(u) − hG(u)∣ ≤ 2z + 2(2R +Q)ε.

Next, by Lemma 3 with δ = 0, after noting that Assumption 1 implies that B(a, r) ⊆ G ⊆

B(a,2R), the event A implies that

dH(Ĝ,G) ≤
6Rz

r
+

6(2R +Q)ε

r
,

so long as 2z + 2(2R + Q)ε ≤ r/2. Combining Lemma 1 and Theorem 4 yields, for all
u ∈ Sd−1, and all t ≥ 0,

PG [∣ĥ(u) − hG(u)∣ > tn−
1

γ+α+1 ] ≤ e−C1t
γ+α+1

,

where the constant C1 is given in Theorem 4 with α = d and β = 1.

By a volumetric argument, #N ≤ (3/ε)d. Hence, for z of the form z = tn−
1

γ+α+1 , a union
bound yields that the event A holds with probability at least 1 − 3dδ, where

δ = 2e−C1nz
γ+α+1−d log ε.

Finally, taking ε = R(2R +Q)−1z yields the desired result.

Corollary 4. Suppose the assumptions of Theorem 7 hold. Then, the estimator Ĝ sat-
isfies

sup
G∈Kr,R

EG[dH(Ĝ,G)] = O((n/ logn)−
1

γ+α+1 ).
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Proof. The proof follows from a simple truncation argument:

EG[dH(Ĝ,G)] = EG[dH(Ĝ,G)1dH(Ĝ,G)≤x] +EG[dH(Ĝ,G)1dH(Ĝ,G)>x]

≤ x + 2RPG[dH(Ĝ,G) > x].

Finally, apply Theorem 7 with x ≍ (
logn
n

)

1
γ+α+1

.

Remark 5. Note that when ε is exactly uniform on a ball of radius Q, then γ = (d −
1)/2. If the convex set G also satisfies the rolling ball assumption (see Remark 2), then
α = (d + 1)/2 and hence the minimax upper bound above becomes O((n/ logn)−1/(d+1)).
Compare this with the minimax rate of Θ((n/ log(n))−2/(d+1)) [4]. Thus, this worse rate
is the price to pay for having contaminated observations.

Remark 6. Similar convergence guarantees also hold for the computable estimator ĜM
(23), though due to space constraints, we do not include them here.

3.3. Minimax lower bound for Gaussian errors

The next theorem gives a lower bound for the minimax risk of estimation G ∈ Kr,R in the
case that the error distribution is Gaussian. As with Corollary 2, it is also polylogarithmic
in the sample size.

Theorem 8. Suppose the error distribution is a centered Gaussian with covariance
matrix σ2I, where I is the d × d identity matrix with d > 1. Let r and R be any two
positive real numbers satisfying R/r = 2

√
d. For each τ in (0,1), there exist positive

constants c and C depending only on d, σ, τ , r, and R such that

inf
Ĝ

sup
G∈Kr,R

PG[dH(G, Ĝ) > c(logn)−2/τ
] ≥ C,

and
inf
Ĝ

sup
G∈Kr,R

EG[dH(G, Ĝ)] ≥ C(logn)−2/τ ,

where the infimum runs over all estimators Ĝ of G based on Y1, . . . , Yn.

Remark 7. The assumption d > 1 in Theorem 8 is important. For example, if d = 1
and the points X1, . . . ,Xn are uniformly distributed on a bounded interval, then a method
of moments estimator yields the optimal (polynomial) Θ(1/

√
n) rate of convergence for

the endpoints.

Proof. In the following, we assume that c and C are generic positive constants, depend-
ing only on d, σ, τ , and δ.
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Let δ > 0 be fixed and m be a positive integer. Let ψ be chosen as in Lemma 7 in
the supplementary material [3] and γm = (4/3)δ−1πm. Replacing ψ by x ↦ (ψ(−x/δ) +
ψ(x/δ))/2, we can assume without loss of generality that ψ is symmetric about the origin,
supported in the interval [−δ, δ], and inf ∣x∣≤δ(3/4) ψ(x) > 0. Note that this assumption does
not alter the decay rate of its Fourier transform.

Define hm(x) = ψ(x) sin(γmx), Hm(x1, . . . , xd−1) = ∏
d−1
k=1 hm(xk), and for L > 0 and

ω ∈ {−1,+1}, let

bω(x1, . . . , xd−1) =
d−1

∑
k=1

g(xk) + ω (L/γ2
m)Hm(x1, . . . , xd−1),

where g satisfies:

max
x∈[−δ,δ]

g′′(x) < 0, and (28)

∣F[g](t)∣ ≤ Ce−c∣t∣
τ

, for some positive constants c and C (29)

For concreteness, one can take an appropriately scaled Cauchy density, g(x) ∝ 1
1+x2/δ20

,

x ∈ R, which is strictly concave in the region where ∣x∣ < δ0/
√

3 (thereby satisfying (28))
and satisfies (29) with τ = 1. In fact, from the inequality 1 + ∣t∣ ≥ ∣t∣τ , we have that (29)
is satisfied for all τ ∈ (0,1).

By (28) and Lemma 8, if L is chosen small enough, we ensure that the Hessian of bω,
i.e., ∇2bω, is negative-semidefinite and hence the sets

Gω = {(x1, . . . , xd) ∈ [−δ, δ]d−1
×R ∶ −δ ≤ xd ≤ bω(x1, . . . , xd−1)}

are convex. By scaling g and choosing L small enough, we can ensure that 0 ≤ bω ≤ δ.
This means that Gω ⊂ [−δ, δ]d, and since [−δ, δ]d ⊂ Bd(0,

√
dδ), we may take R =

√
dδ.

Finally, observe that Bd(−δ/2, δ/2) ⊂ Gω, since the cube [−δ,0]d is (trivially) contained
in Gω and Bd(0, δ) ⊂ [−δ, δ]d. Thus, we may take r = δ/2. With these choices of r and R,
we have Gω ∈ Kr,R.

Note that hm is an odd function about the origin. Thus ∫[−δ,δ]d−1 Hm(x)dx = 0 because

we are integrating an odd function about the origin. Therefore, ∣Gω ∣ = δ(2δ)
d−1 + (d −

1) ∫[−δ,δ] g(x)dx. Also, note that

d∆(G+1,G−1) = ∫[−δ,δ]d−1
∣b+1(x) − b−1(x)∣dx

=
2L

γ2
m
∫[−δ,δ]d−1

∣Hm(x)∣dx

=
2L

γ2
m

d−1

∏
k=1
∫[−δ,δ]

∣ sin(γmxk)ψ(xk)∣dxk.
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The factor ∏
d−1
k=1 ∫[−δ,δ] ∣ sin(γmxk)ψ(xk)∣dxk in the above expression can be lower

bounded by a constant, independent of m. In fact,

∫[−δ,δ]
∣ sin(γmxk)ψ(xk)∣dxk ≥ ∫∣xk ∣≤δ(3/4)

∣ sin(γmxk)ψ(xk)∣dxk

≥ 3δ/4 inf
∣x∣≤δ(3/4)

∣ψ(x)∣∫∣xk ∣≤1
∣ sin(πmxk)∣dxk

= 3δ/π inf
∣x∣≤δ(3/4)

∣ψ(x)∣

> 0.

Here, we used the fact that

∫[−1,1]
∣ sin(πmx)∣dx = 4m∫[0,1/(2m)]

∣ sin(πmx)∣dx

= (4/π)∫[0,π/2]
sin(x)dx

= 4/π,

for any non-zero integer m. Thus, there exists a constant C1 > 0, independent of m, such
that

d∆(G+1,G−1) ≥
C1

m2
. (30)

For ω = ±1, define fω = 1Gω/∣Gω ∣. Let φσ(x) = (1/(2πσ2))d/2e−∥x∥
2/(2σ2) for x ∈ Rd. Note

that for all y > 0,

TV(PG+1 ,PG−1) =
1

2
∫
Rd

∣(f+1 − f−1) ∗ φσ(x)∣dx

=
1

2
∫∥x∥>y

∣(f+1 − f−1) ∗ φσ(x)∣dx +
1

2
∫∥x∥≤y

∣(f+1 − f−1) ∗ φσ(x)∣dx

≤ ∫∥x∥>y
sup

z∈[−δ,δ]d
φσ(x − z)dx+

1

2

√
∣Bd(0, y)∣

√

∫
Rd

∣F[f+ − f−1](t)F[φσ](t)∣2dt

≤ C2e
−c2y2 +C2y

d/2
√

∫
Rd

∣F[f+ − f−1](t)F[φσ](t)∣2dt,

for some positive constants c2 and C2 that depend only on δ, σ, and d. Set y ∝√
log( 1

∫Rd ∣F[f+−f−1](t)F[φσ](t)∣2dt) so that TV(PG+1 ,PG−1) can be bounded by a fixed power

of ∫Rd ∣F[f+ − f−1](t)F[φσ](t)∣
2dt.

Split ∫Rd ∣F[f+1 − f−1](t)F[φσ](t)∣
2dt into two integrals with domains of integration

∥t∥∞ ≤ amτ and ∥t∥∞ > amτ , where a is as in Lemma 5. Using the fact that F[φσ](t) =

σde−σ
2∥t∥22/2, we have

∫∥t∥∞>amτ
∣F[f+1 − f−1](t)F[φσ](t)∣

2dt ≤ C3e
−c3m2τ

. (31)
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By Lemma 5, we have

∣F[f+1 − f−1](t)∣ =
1

∣G+1∣
∣F[1G+1 − 1G−1](t)∣ ≤ Ce

−cmτ ,

whenever ∥t∥∞ ≤ amτ . Thus,

∫∥t∥∞≤amτ
∣F[f+1 − f−1](t)F[φσ](t)∣

2dt ≤ Ce−cm
τ

∫
Rd

∣F[φσ](t)∣
2dt. (32)

Recall that TV(PG+1 ,PG−1) is bounded by a fixed power of ∫Rd ∣F[f+1 −

f−1](t)F[φσ](t)∣
2dt, which in turn is bounded by the sum of (31) and (32). This shows

that
TV(PG+1 ,PG−1) ≤ C4e

−c4mτ ,

for some positive constants c4 and C4 that depend only on d, σ, τ , and δ.

In summary, we have shown that d∆(G+1,G−1) ≥
C1

m2 and TV(PG+1 ,PG−1) ≤ C4e
−c4mτ ,

where the constants depend only on d, σ, τ , δ.

The minimax probability lower bound is constructed from a simple two point statistical
hypothesis test. That is, choose m ≍ (logn)1/τ and apply Theorem 2.2(i) in [20] to lower
bound the minimax probability:

inf
Ĝ

sup
G∈Kr,R

PG[dH(G, Ĝ) > c5(logn)−2/τ
] ≥ inf

Ĝ
sup

G∈Kr,R
PG[d∆(G, Ĝ) > c6(logn)−2/τ

], (33)

for some positive constants c5 and c6 that depend only on d, σ, τ , δ. Note that in
establishing (33), we used Lemma 4 to upper bound d∆ by dH. The second conclusion of
the theorem involving the lower bound on the minimax risk is a direct consequence of
Markov’s inequality.

3.4. Gap between the lower and upper bounds

Note that our upper (Corollary 2) and lower (Theorem 8) bounds do not match. However,
as with all Gaussian or ill-posed deconvolution problems [7], the rate is very slow (loga-
rithmic), and the difference between O(log logn/

√
logn) and Ω(1/ log2 n) is immaterial.

In fact, Gaussian deconvolution in the context of manifold estimation was considered pre-
viously in [9, Section 5], where they also obtain non-matching upper and lower bounds
on the minimax Hausdorff distance of O(1/

√
logn) and Ω(1/ logn), respectively. Impor-

tantly, these authors did not have to deal with the additional shape constraints imposed
by convex bodies and difficulties that arise with Fourier transforms of compactly sup-
ported functions (we address this further in the next paragraph). As with those authors
(see the remarks at the end of [9, Section 5]), we do not know how to close the gap in
the rates at the moment and we leave such work for future consideration.
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The proof of our lower bound is different than other lower bounds in deconvolution
problems. In standard density deconvolution [7], the hypothesis space is rich enough to
ensure the existence of a function whose Fourier transform vanishes on a compact interval.
These functions are then used to construct densities that are well-separated yet induce
statistically indistinguishable models. The uncertainty principle for Fourier transforms
[18] make such constructions impossible in our setting. That, is our function class consists
of compactly supported densities of the form 1G/∣G∣ for compact, convex sets G. The
Fourier transform of an infinitely differentiable, compactly supported function decays
faster than any polynomial. Indeed, such a function was used in constructing our two-
point test. For the proof of the lower bound, to ensure that the total variation between
the two induced distributions was small, we needed to be able to match the exponential
decay of the Fourier transform of the Gaussian density. However, there is a limit on how
fast the Fourier transform of a compactly supported function can decay. For example, a

result in [13] shows that a decay of O(e−∣t∣ε(t)) is possible if and only if ∫
∞

1
ε(t)
t
dt is finite.

Unfortunately, O(e−c∣t∣
2

) decay is needed to match the decay of the Fourier transform of
a Gaussian density.

Supplementary Material

Supplement A: Additional Proofs
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide the proofs of the corol-
laries and intermediate lemmas omitted from the main paper.
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