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a b s t r a c t

We clarify that Hölder’s inequality can be stated more generally than is often realized. This
is an immediate consequence of an analogous information-theoretic identity whichwe call
Hölder’s identity. We also explain Andrew R. Barron’s original use of the identity.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Hölder’s inequality is most commonly written∫
|f (y)g(y)|dµ(y) ≤ ∥f ∥p∥g∥q (1)

for conjugate exponents p and q. An alternative way of expressing this is to say that for any pair of non-negative functions f
and g and any α ∈ [0, 1],∫

f α(y)g1−α(y)dµ(y) ≤

(∫
f (y)dµ(y)

)α (∫
g(y)dµ(y)

)1−α

. (2)

In other words, the integral of the point-wise geometric average of two functions is bounded by the geometric average of their
integrals.

In Section 2, we point out that (2) holds for arbitrary geometric expectations as long as µ is σ -finite. We also clarify a few
points of confusion that have arisen regarding thismore general inequality; a number of papers have stated the resultwithout
σ -finiteness or purported to prove it with Jensen’s inequality. The section concludes with Hölder’s identity quantifying the
ratio of the two sides of Hölder’s inequality. Next, Section 3 describes the compensation identities, two decompositions of
expected relative entropy between a random probability measure and a fixed probability measure. These identities both
resemble the bias–variance decomposition, and one of the variance-like terms that arises is exactly the natural logarithm of
the ratio between the two sides of Hölder’s inequality. Sections 2 and 3 are adapted from appendix sections ofW. D. Brinda’s
doctoral thesis, and we will point to it for proofs.

Additional discussion is provided in a supplement to this paper. Section A recalls the context of the original paper that
presented a version of Hölder’s identity which arose in an analysis of the relative entropy from the Bayesian posterior

∗ Corresponding author.
E-mail addresses: william.brinda@yale.edu (W.D. Brinda), jason.klusowski@rutgers.edu (J.M. Klusowski), xiaoqian.yang@yale.edu (D. Yang).

https://doi.org/10.1016/j.spl.2019.01.008
0167-7152/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.spl.2019.01.008
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2019.01.008&domain=pdf
mailto:william.brinda@yale.edu
mailto:jason.klusowski@rutgers.edu
mailto:xiaoqian.yang@yale.edu
https://doi.org/10.1016/j.spl.2019.01.008


W.D. Brinda, J.M. Klusowski and D. Yang / Statistics and Probability Letters 148 (2019) 150–154 151

distribution to a particular approximation of that distribution. Section B works out the proof of the generalized Hölder’s
inequality that is indicated by Dunford and Schwartz (1958) to verify that it requires σ -finiteness of µ. Finally, in Section C
we use Jensen’s inequality to give a general version of Hölder’s inequality that does not require σ -finiteness, although it does
use an integrability condition that was not needed in our σ -finite version.

2. Generality of Hölder’s inequality

Inequality (2) holds for arbitrary geometric expectations over a random element indexing functions.

Theorem 2.1 (Hölder’s Inequality). Let X and Y be measurable spaces, and let f : X × Y → R+ be product measurable. For any
σ -finite measure µ on Y and any X -valued random element X,∫

eE log f (X,y)dµ(y) ≤ eE log
∫
f (X,y)dµ(y).

This fact is an immediate consequence of Hölder’s identity (Corollary 2.5) presented later in this section.
Inequalities (1) and (2) represent the two-point distribution version of Theorem 2.1. The generalization for an arbitrary

finite measure on X is easy to derive by normalizing and then applying the result for probability measures.

Corollary 2.2. Let X and Y be measurable spaces, and let f : X × Y → R+ be product measurable. For any σ -finite measure µ

on Y and finite measure γ on X ,∫
e
∫
log f (x,y)dγ (x)dµ(y) ≤ e

1
γ (X )

∫
[log

∫
f (x,y)γ (X )dµ(y)]dγ (x)

.

Using ef as the function in Theorem 2.1, and taking the log of both sides gives us an equivalent inequality that is also
worth stating.

Corollary 2.3. Let X and Y be measurable spaces, and let f : X × Y → R be product measurable. For any σ -finite measure µ

on Y and any X -valued random element X,

log
∫

eEf (X,y)dµ(y) ≤ E log
∫

ef (X,y)dµ(y).

The fact that Hölder’s inequality holds in this generality is perhaps not widely known. For example, Karakostas (2008)
proved an extension of Hölder’s inequality to countable products assuming µ is σ -finite; that result was improved by Chen
et al. (2016, Thm 2.11). The inequalities they present are readily subsumed by Corollary 2.2 by letting γ concentrate on a
countable set.

Haussler and Opper (1997, Lemma 1) state our Corollary 2.3, but the justification presented there is not quite adequate.
They observe, using the two-point distribution version of Hölder’s inequality, that the mapping f ↦→ logµ ef is convex on
the space of real-valued functions on a set. [Pettis] expectations commute with continuous affine functionals, and Jensen’s
inequality relies on the expectation commuting with a continuous affine functional tangent to the convex function. The
existence of a tangent continuous affine functional is guaranteed for convex functions on finite-dimensional spaces, but not
on infinite-dimensional spaces. (As a simple example, consider any discontinuous linear functional; it is convex, but it has no
continuous affine functional tangent to it. For a more concrete example, see Perlman (1974, Introduction).) If adequate care
is taken, the logic of Jensen’s inequality can be applied to this problem as we show in Section C; there, we prove a variant of
Hölder’s identity that does not require σ -finiteness.

Haussler and Opper (1997) reference Symanzik (1965) where the inequality in our Theorem 2.1 is stated and called
generalized Hölder’s inequality; he points to the classic text (Dunford and Schwartz, 1958, VI.11 Ex 36) where it is left as an
exercise. Although that exercise does not say to assume σ -finiteness, the proof they hint at does require it — see Section B.
For σ -finite measures, at least, the proof can follow a different route from the one they hint at. We establish an identity
that has an information-theoretic interpretation involving a non-negative ‘‘variance’’ functional Ṽ for random probability
measures which will be defined and explained in Section 3. For now, suffice it to say that Ṽ represents an expected relative
entropy.

Theorem 2.4 (See Brinda (2018, Thm B.0.8)). Let X and Y be measurable spaces, and let f : X × Y → R be product measurable.
Let µ be a σ -finite measure on Y , and let X ∼ P be an X -valued random element. If

∫
ef (x,y)dµ(y) is in (0, ∞) P-almost surely

and E log
∫
ef (X,y)dµ(y) > −∞, then

E log
∫

ef (X,y)dµ(y) − log
∫

eEf (X,y)dµ(y) = ṼQX

where Qx has density qx(y) :=
ef (x,y)∫

ef (x,y)dµ(y)
with respect to µ.
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Corollary 2.5 (Hölder’s Identity). Let X and Y be measurable spaces, and let f : X × Y → R+ be product measurable. Let µ

be a σ -finite measure on Y , and let X ∼ P be an X -valued random element. If
∫
f (x, y)dµ(y) is in (0, ∞) P-almost surely and

E log
∫
f (X, y)dµ(y) > −∞, then

eE log
∫
f (X,y)dµ(y)∫

eE log f (X,y)dµ(y)
= eṼQX

where Qx has density qx(y) :=
f (x,y)∫

f (x,y)dµ(y) with respect to µ.

An interpretation of ṼQX will be informed by the ‘‘reverse compensation identity’’ which we describe in the coming
section.

In the special case that X only takes two possible values, ṼQX is an unnormalized Rényi divergence Dλ between the two
possible distributions, as defined in Section 3.

Theorem 2.6. Let Y be a measurable space, and let f : Y → R+ and g : Y → R+ have finite positive µ-integrals. Then∫
f λ(y)g1−λ(y)dµ(y)∫

f λ(y)dµ(y)
∫
g1−λ(y)dµ(y)

= eDλ(Q∥R)

where Q has density f (y)∫
f (y)dµ(y) and R has density g(y)∫

g(y)µ(y) with respect to µ.

3. The compensation identities

Theorem 3.1, called the compensation identity by Topsøe (2001, Thm 9.1), conveniently decomposes the expected relative
entropy from a random probability measure to a fixed probability measure.1

Theorem 3.1 (Compensation Identity (see Brinda (2018, Thm A.0.1))).
Let {qx : x ∈ X } be a family of probability densities with respect to a σ -finite measure µ, and suppose that (x, y) ↦→ qx(y) is

product measurable. Let X ∼ P be an X -valued random element. For any probability measure R on Y ,

ED(QX ∥ R) = D(Q̄P ∥ R) + ED(QX ∥ Q̄P )

where Q̄P represents the P-mixture over {qx} with density

q̄P (y) =

∫
qx(y)P(dx).

A less familiar decomposition, which we will call the reverse compensation identity, holds when the expected relative
entropy’s second argument is random rather than its first. Instead of a mixture, it involves a geometric-mixture.2 We define
the P-geometric mixture of {qx} to be the probability measure with density

q̃P (y) :=
eEX∼P log qX (y)∫

eEX∼P log qX (y)dµ(y)
.

Jensen’s inequality and Tonelli’s theorem together provide an upper bound for the denominator.∫
eE log qX (y)dµ(y) ≤ E

∫
elog qX (y)dµ(y) = 1.

This integral can be zero, however, in which case the geometric-mixture is not well-defined.3

Theorem 3.2 (Reverse Compensation Identity (see Brinda (2018, Thm A.0.2))). Let {qx : x ∈ X } be a family of probability densities
with respect to a σ -finite measure µ, and suppose that (x, y) ↦→ qx(y) is product measurable. Let X ∼ P be an X -valued random
element. If

∫
eE log qX (y)dµ(y) > 0, then for any probability measure R on Y ,

ED(R ∥ QX ) = D(R ∥ Q̃P ) + ED(Q̃P ∥ QX )

where Q̃P represents the P-geometric mixture over {qx}.

A two-point distribution version of Theorem 3.2 is implied by Csiszár and Matúš (2003, Eq (3) with (4)) and similarly for
any finite set of discrete distributions by Veldhuis (2002, Equation (9)).

1 In Theorem3.1 and throughout the remainder of this paper, lower-case and upper-case letters implicitly pair probabilitymeasureswith their densities.
2 What we call a ‘‘geometric mixture’’ is sometimes called a ‘‘log mixture’’ or ‘‘log-convex mixture’’, for instance by Grünwald (2007, Sec 19.6).
3 An example of such a pathological case is when qX has positive probabilities on two densities that are mutually singular.
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Theorems 3.1 and 3.2 are perfectly analogous to the bias–variance decomposition for Hilbert-space-valued random
vectors.4 The expected divergence from a random element to a fixed element decomposes into the divergence from a
‘‘centroid’’ of the random element to that fixed element plus the internal variation of the random element from that
centroid.5 We suggest a notation that makes use of this intuition:

V̄QX : = inf
R

ED(QX ∥ R)

= ED(QX ∥ Q̄P )

and6

ṼQX : = inf
R

ED(R ∥ QX )

=

⎧⎨⎩ED(Q̃P ∥ QX ), if
∫

eE log qX (y)dµ(y) > 0

∞, otherwise.

Roughly speaking, V̄QX represents the smallest possible expected code-length redundancy one can achieve when the
coding distribution is the random QX ; to achieve it, one sets the decoding distribution to be Q̄P . On the other hand, ṼQX
represents the smallest possible expected code-length redundancy when the decoding distribution is the random QX ; to
achieve it, one sets the coding distribution to be Q̃P .

It is interesting to note that two-point distribution versions of these variance-like quantities are often used as divergences.
The Jensen–Shannon divergence between probability measures Q and R is V̄ of the random probability measure that takes
values Q and R each with probability 1/2.

DJS(Q , R) :=
1
2D

(
Q ∥

Q+R
2

)
+

1
2D

(
R ∥

Q+R
2

)
Unnormalized Bhattacharyya divergence7 is the Ṽ analogue:

DUB(Q , R) =
1
2D

( √
qr

µ
√
qr ∥ q

)
+

1
2D

( √
qr

µ
√
qr ∥ r

)
where q and r are densities of Q and R with respect to µ, and µ

√
qr is short-hand for

∫ √
q(y)r(y)dµ(y) using de Finetti

notation.8 The derivation is straight-forward using the definitionDUB(Q , R) := log 1
µ

√
qr , but it is more easily seen via Lemma

A.3. Unnormalized Rényi divergence is a generalization Dλ(Q ∥ R) := log 1
µ qλr1−λ , and a random distribution that takes values

Q with probability λ and R with probability 1 − λ has a Ṽ of Dλ(Q ∥ R).
Information theorists have observed ‘‘Pythagorean’’ identities involving information projections and reverse information

projections (Csiszár and Matúš, 2003, Theorem 3). Those identities are analogous to the Pythagorean identity in Euclidean
spaceRn, whereas the compensation identities are analogous to the bias–variance decomposition which is itself an instance
of the Pythagorean theorem applied in the L2-space of Rn-valued random vectors that have finite expected squared norms.
The information projection identities tell us about projecting within the space of fixed probability measures, while the
compensation identities tell us how to project from the space of random probability measures onto the subset of fixed
probability measures. To be more specific, the information projection identities highlight the roles of linear and geometric
paths in the space of fixed probability measures, while the compensation identities reveal that the importance of linear and
geometric paths extends to the space of random probability measures.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2019.01.008.

4 In fact, the compensation identity and bias–variance decomposition are both instances of this decomposition for Bregman divergences — see Telgarsky
and Dasgupta (2012, Lem 3.5) and Pfau (2013).
5 It follows that the centroid is the choice of fixed element that has the smallest possible expected divergence from the random element.
6 This alternative representation of Ṽ is justified by Brinda (2018, Lem A.3.4).
7 This terminology is borrowed from Grünwald (2007, Eq (19.38)).
8 Thede Finetti notationwritesmeasures like ordinary functionals that can be applied tomeasurable functions; it is summarized and advocated in Pollard

(2002, Sec 1.4). We will use this notation extensively in the coming proofs.
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