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Abstract
Motivated by applications such as discovering strong ties in social networks and assembling genome
subsequences in biology, we study the problem of recovering a hidden 2k-nearest neighbor (NN)
graph in an n-vertex complete graph, whose edge weights are independent and distributed accord-
ing to Pn for edges in the hidden 2k-NN graph and Qn otherwise. The special case of Bernoulli
distributions corresponds to a variant of the Watts-Strogatz small-world graph. We focus on two
types of asymptotic recovery guarantees as n → ∞: (1) exact recovery: all edges are classified
correctly with probability tending to one; (2) almost exact recovery: the expected number of mis-
classified edges is o(nk). We show that the maximum likelihood estimator achieves (1) exact re-
covery for 2 ≤ k ≤ no(1) if lim inf 2αn

logn > 1; (2) almost exact recovery for 1 ≤ k ≤ o
(

logn
log logn

)
if lim inf kD(Pn||Qn)

logn > 1, where αn , −2 log
∫ √

dPndQn is the Rényi divergence of order 1
2

and D(Pn||Qn) is the Kullback-Leibler divergence. Under mild distributional assumptions, these
conditions are shown to be information-theoretically necessary for any algorithm to succeed. A
key challenge in the analysis is the enumeration of 2k-NN graphs that differ from the hidden one
by a given number of edges. We also analyze several computationally efficient algorithms and
provide sufficient conditions under which they achieve exact/almost exact recovery. In particular,
we develop a polynomial-time algorithm that attains the threshold for exact recovery under the
small-world model. 1

Keywords: Nearest neighbor graphs, small-world graphs, Information-theoretic lower bounds

1. Introduction

The strong and weak ties are essential for information diffusion, social cohesion, and community
organization in social networks (Granovetter, 1977). The strong ties between close friends are
responsible for forming tightly-knit groups, while the weak ties between acquaintances are crucial
for binding groups of strong ties together (Easley and Kleinberg, 2010). The celebrated Watts-
Strogatz small-world graph (Watts and Strogatz, 1998) is a simple network model that exhibits both
strong and weak ties. It posits that n nodes are located on a ring and starts with a 2k-nearest neighbor
(NN) graph of strong ties, where each node is connected to its 2k nearest neighbors (k on the left

1. Extended abstract. Full version appears as [arXiv reference, v1911.08004].
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and k on the right) on the ring. Then to generate weak ties, for every node, each of its strong ties is
rewired with probability ε to a node chosen uniformly at random. As ε varies from 0 to 1, the graph
interpolates between a ring lattice and an Erdős-Rényi random graph; for intermediate values of ε,
the graph is a small-world network: highly clustered with many triangles, yet with a small diameter.

The Watts-Strogatz small-world graph and its variants, albeit simple, have been extensively
studied and widely used in various disciplines to model real networks beyond social networks,
such as academic collaboration network (Newman, 2001), metabolic networks (Wagner and Fell,
2001), brain networks (Bassett and Bullmore, 2006), and word co-occurrence networks in language
modeling (Cancho and Solé, 2001; Motter et al., 2002). Most of the previous work focuses on
studying the structures of small-world graphs (Newman and Watts, 1999) and their algorithmic con-
sequences (Kleinberg, 2000; Moore and Newman, 2000; Saramäki and Kaski, 2005). However, in
many practical applications, it is also of interest to distinguish strong ties from weak ones (Marsden
and Campbell, 1984; Gilbert and Karahalios, 2009; Gilbert, 2012; Rotabi et al., 2017). For example,
in Facebook (Marlow et al., 2009) or Twitter network (Huberman et al., 2008), identifying the close
ties among a user’s potentially hundreds of friends provides valuable information for marketing
and ad placements. Even when additional link attribute information (such as the communication
time in who-talks-to-whom networks (Onnela et al., 2007)) are available to be used to measure the
strength of the tie, the task of discovering strong ties could still be challenging, as the link attributes
are potentially noisy or only partially observed, obscuring the inherent tie strength. Therefore, it
is of fundamental importance, in both theory and practice, to understand when and how we can
infer strong ties from the noisy and partially observed network data. In this paper, we address this
question in the following statistical model:

Definition 1 (Hidden 2k-NN graph recovery)
Given: n ≥ 1, and two distributions Pn and Qn, parametrized by n.
Observation: A randomly weighted, undirected complete graph w with a hidden 2k-NN graph x∗

on n vertices, such that the edge weights are independent, and for each edge e, the edge weight we
is distributed as Pn if e is an edge in x∗ and as Qn otherwise.
Inference Problem: Recover the hidden 2k-NN graph x∗ from the observed random graph.

(a)
2k-NN−−−−→

recovery
(b)

Figure 1: Left: An observed graph generated by the hidden 2k-NN graph model with n = 30
vertices, k = 4, Pn = Bern(0.8), and Qn = Bern(0.09); Right: the observed graph with vertices
rearranged according to the latent 2k-NN graph.
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Note that every 2k-NN graph x can be described by a permutation σ on [n] as follows: first,
construct a Hamiltonian cycle (σ(1), σ(2), . . . , σ(n), σ(1)), then connect pairs of vertices that are
at distance at most k on the cycle (see Fig. 1 for graphical illustrations).

The 2k-NN model encompasses partially observed networks as a special case. This can be
accomplished by considering Pn = εδ∗+ (1− ε)P ′n and Qn = εδ∗+ (1− ε)Q′n where ∗ is a special
symbol outside of the support of P ′n and Q′n indicating those edge weights that are unobserved.
When Pn and Qn are Bernoulli distributions with corresponding success probabilities pn > qn, we
arrive at a variant of the Watts-Strogatz small-world graph.

The problem of recovering a hidden NN graph is also motivated by de novo genome assem-
bly, the reconstruction of an organism’s long sequence of A,G,C, T nucleotides from fragmented
sequencing data. The previous work (Bagaria et al., 2020) casts genome scaffolding as a hidden
Hamiltonian cycle recovery problem, which is a special case of our model with k = 1. By consider-
ing k > 1, the general 2k-NN graph model is a closer approximation to the real data. See the arXiv
version for a more detailed discussion of this application.

Note that in the aforementioned applications we often have k � n; thus in this paper we
focus on the regime of k = no(1) and study the following two types of recovery guarantees. Let
x∗ ∈ {0, 1}(

n
2) denote the adjacency vector of the hidden 2k-NN graph, where x∗e = 1 for every

edge e in the hidden 2k-NN graph and x∗e = 0 otherwise. Let X denote the collection of adjacency
vectors of all 2k-NN graphs with vertex set [n].

Definition 2 (Exact recovery) An estimator x̂ = x̂(w) ∈ {0, 1}(
n
2) achieves exact recovery if, as

n→∞,
sup
x∗∈X

P {x̂ 6= x∗} = o(1),

where w is distributed according to the hidden 2k-NN graph model in Definition 1 with hidden
2k-NN graph x∗.

Depending on the applications, we may not be able to reconstruct the hidden 2k-NN graph x∗

perfectly; instead, we may consider correctly estimating all but a small number of edges, which
is required to be o(nk), since a 2k-NN graph contains kn edges. In particular, let d(x∗, x̂) be the
Hamming distance d(x∗, x̂) =

∑
e 1{x∗e 6=x̂e}.

Definition 3 (Almost exact recovery) An estimator x̂ = x̂(w) ∈ {0, 1}(
n
2) achieves almost exact

recovery if, as n→∞,
sup
x∗∈X

E [d(x∗, x̂)] = o(nk).

Instead of using a permutation-based metric such as the Kendall tau distance, we choose the edge
Hamming distance d for defining almost exact recovery, because for many practical application such
as discovering strong ties in social networks, there is more value in recovering the edges rather than
the permutation. Moreover, the edge sets arise naturally in the analysis of the maximum likelihood
estimator x̂ML: the distribution of the log-likelihood ratio between a 2k-NN graph x and the truth
x∗ only depends on the number of edges in x that differ from x∗. It is also worth noting that many
computationally efficient algorithms, some of which to be discussed in Section 3.1, output an edge
set instead of a permutation. One can further project the edge set to a 2k-NN graph to recover the
permutation, but it is unclear whether this projection can be done in polynomial time.
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Intuitively, for a fixed network size n and a fixed number k of nearest neighbors, as the distri-
butions Pn and Qn get closer, the recovery problem becomes harder. This leads to an immediate
question: From an information-theoretic perspective, computational considerations aside, what are
the fundamental limits of recovering the hidden 2k-NN graph? To answer this question, we derive
necessary and sufficient conditions in terms of the model parameters (n, k, Pn, Qn) under which
the hidden 2k-NN graph can be exactly or almost exactly recovered. These results serve as bench-
marks for evaluating practical algorithms and aid us in understanding the performance limits of
polynomial-time algorithms.

Specifically, we discover that the following two information measures characterize the sharp
thresholds for exact and almost exact recovery, respectively. Define the Rényi divergence of order
1/2:2

αn = −2 log

∫ √
dPndQn; (1)

and the Kullback-Leibler divergence:

D(Pn‖Qn) =

∫
dPn log

dPn
dQn

.

Under some mild assumptions on Pn and Qn, we show that the necessary and sufficient conditions
are as follows:

• Exact recovery (2 ≤ k ≤ no(1)):

lim inf
n→∞

2αn
log n

> 1; (2)

• Almost exact recovery
(

1 ≤ k ≤ o
(

logn
log logn

))
:

lim inf
n→∞

kD(Pn||Qn)

log n
> 1. (3)

The conditions for exact recovery and almost exact recovery are characterized by two different dis-
tance measures αn and D(Pn‖Qn). This arises from large deviation analysis for different regimes
of d(x∗, x̂). See Section 2.3 for a detailed explanation. For the special case of k = 1 (Hamiltonian
cycle), the exact recovery condition was shown to be lim infn→∞

αn
logn > 1 (Bagaria et al., 2020).

Comparing this with (2) for k ≥ 2, we find that, somewhat surprisingly, the exact recovery threshold
is halved when k increases from 1 to 2, and then stays unchanged as long as k remains no(1). In
contrast, the almost exact recovery threshold decreases inversely proportional to k over the range
of [1, o(log n/ log log(n))]. The sharp thresholds of exact recovery for k ≥ nΩ(1) and almost exact
recovery for k = Ω(log n/ log logn) remain open.

For the Bernoulli distribution (in other words, unweighted graphs) with Pn = Bern(p) and
Qn = Bern(q), we have the explicit expressions of

αn = −2 log
(√

pq +
√

(1− p)(1− q)
)

and D(Pn‖Qn) = p log
p

q
+ (1− p) log

1− p
1− q

.

2. It is also related to the so-called Battacharyya distance B(Pn, Qn) via αn = 2B(Pn, Qn).
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As an interesting special case, consider the parametrization

p = 1− ε+
2εk

n− 1
and q =

2εk

n− 1
, (4)

so that the mean number of edges in the observed graph stays at nk for all ε ∈ [0, 1]. This can be
viewed as an approximate version of the Watts-Strogatz small-world graph, in which we start with
a 2k-NN graph, then rewire each edge with probability ε independently at random. In this case, our
main results specialize to:

• Exact recovery is possible if and only if

ε = o(1/n) for k = 1; ε = o(1/
√
n) for 2 ≤ k ≤ no(1). (5)

• Almost exact recovery is possible if and only if

k(1− ε) ≥ 1 + o(1) for 1 ≤ k ≤ o(log n/ log log n). (6)

In the related work (Cai et al., 2017), a similar case of Bernoulli distributions has been studied.3

It is shown in Cai et al. (2017) that exact recovery is impossible if 1−ε = o

(√
logn
n ∨

logn
k

1

log n logn

k2

)
.

In particular, this impossibility result requires ε → 1, which is highly suboptimal compared to
the sharp exact recovery condition (5). It is also shown in Cai et al. (2017) that almost exact re-
covery can be achieved efficiently via thresholding on the number of common neighbors when
1 − ε = ω

(
( logn

n )1/4 ∨ ( logn
k )1/2

)
and via spectral ordering when 1 − ε = ω

(
n3.5

k4

)
; these suffi-

cient conditions, however, are very far from being optimal.
Finally, we remark that our sharp exact and almost exact recovery thresholds are achieved by

the maximum likelihood estimator (MLE) for the hidden 2k-NN graph problem, which is compu-
tationally intractable in the worst case. For the special case k = 1, the exact recovery threshold
is shown to be achieved efficiently in polynomial-time via a linear programming (LP) relaxation
of the MLE (namely, the fractional 2-factor LP) (Bagaria et al., 2020). For k ≥ 2, however, it
remains open whether the exact recovery threshold or the almost exact recovery threshold can be
achieved efficiently in polynomial-time. In this work we analyze several computationally efficient
algorithms and provide sufficient conditions under which they achieve exact/almost exact recovery.
Moreover, under the small-world model where the edge weights are distributed as Bernoulli, we
give a polynomial-time algorithm that attains the threshold for exact recovery.

The paper is organized as follows. In Section 2 we present our main results on the sharp thresh-
olds for exact and almost recovery, and give a sketched proof. In Section 3 we analyze the compu-
tationally efficient recovery algorithms. Detailed proofs of all the results are included in the arXiv
version Ding et al. (2019).

3. To be precise, the previous work Cai et al. (2017) considers Bernoulli distributions under a slightly different param-
eterization: p = 1 − ε + 2ε2k

n−1
and q = 2εk

n−1
. In addition to exact recovery and approximate recovery, a hypothesis

testing problem between the small-world graph and Erdős-Rényi random graph is studied.
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2. Sharp thresholds for recovery of hidden 2k-NN graphs

2.1. Exact recovery

The maximum likelihood estimator for the hidden 2k-NN graph problem is equivalent to finding
the max-weighted 2k-NN subgraph with weights given by the log likelihood ratios. Specifically,
assuming that dPn/dQn is well-defined, for each edge e, let Le = log dPn

dQn
(we). Then the MLE is

the solution to the following combinatorial optimization problem:

x̂ML = arg max
x∈X

〈L, x〉 , (7)

where we recall that X denotes the collection of adjacency vectors of all 2k-NN graphs on [n].
When k = 1, (7) reduces to the max-weighted Hamiltonian cycle problem. Note that in the Poisson,
Gaussian or Bernoulli model where the log likelihood ratio is an affine function of the edge weight,
we can simply replace L in (7) by the edge weights w.

Recall that αn = −2 log
∫ √

dPndQn. We show that if 2 ≤ k ≤ no(1), then the condition
lim infn→∞(2αn/ log n) > 1 is sufficient for x̂ML to achieve exact recovery. This condition is also
necessary, with the following additional assumption:

Assumption 1 (Bagaria et al. (2020), Assumption 1) Let X = log dPn
dQn

(ωx) for some ωx ∼ Pn

and Y = log dPn
dQn

(ωy) for some ωy ∼ Qn. Assume that

sup
τ∈R

(logP {Y ≥ τ}+ logP {X ≤ τ}) ≥ −(1 + o(1))αn + o(log n).

Remark 4 (Generality of Assumption 1) Via Chernoff’s inequality, it can be shown that (deriva-
tion in Bagaria et al. (2020), p67) supτ∈R (logP {Y ≥ τ}+ logP {X ≤ τ}) ≤ −αn. We rely on
this Chernoff’s inequality in our large deviation analysis to establish the sufficient condition for
x̂ML to achieve exact recovery. Assumption 1 essentially ensures that the Chernoff’s inequality is
asymptotically tight, so we can invert the large deviation analysis to show that the sufficient condi-
tion is also almost necessary. It was shown in (Bagaria et al., 2020, Lemma 6) that Assumption 1
is very general and is fulfilled by a wide class of weight distributions including Poisson, Gaussian
and Bernoulli distributions.

The following is our main result regarding exact recovery.

Theorem 5 (Exact recovery) Let k ≥ 2.

• Suppose

αn −
1

2
(log n+ 17 log k)→ +∞. (8)

Then the MLE (7) achieves exact recovery: P {x̂ML 6= x∗} → 0. In particular, this holds if
k = no(1) and

lim inf
n→∞

2αn
log n

> 1.

• Conversely, assume that k < n/12 and Assumption 1 holds. If exact recovery is possible,
then

lim inf
n→∞

2αn
log n

≥ 1.
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When k = 1, as shown in Bagaria et al. (2020) the sharp threshold for exact recovery is
lim infn→∞

αn
logn > 1, which is stronger than the condition in Theorem 5 by a factor of 2. In

other words, from k = 1 to k ≥ 2 there is a strict decrease in the required level of signal. A simple
explanation is that the hidden 2k-NN graph x∗ contains more edges when k ≥ 2, and the elevated
weights on these edges provide extra signal for determining the latent permutation σ∗. However,
this extra information ceases to help as k increases from 2 to no(1), which can be attributed to the
following fact: when we swap any pair of adjacent vertices on σ∗, we always get a 2k-NN graph
x which differ from x∗ by 4 edges, regardless of how large k is. In fact for all 2 ≤ k ≤ no(1),
the bottleneck for exact recovery is formed by such swaps, resulting in the k-independent necessary
condition lim infn→∞

2αn
logn ≥ 1 (see Section 2.2 in the arXiv version for details).

2.2. Almost exact recovery

In this section, we present our main results for almost exact recovery. Let Xi’s and Yi’s denote
i.i.d. copies of the log-likelihood ratio log dPn

dQn
under distributions Pn and Qn respectively, with log

MGFs ψP (λ) and ψQ(λ). Denote the Legendre transforms of the log MGFs as

EQ(τ) = ψ∗Q(τ) , sup
λ∈R

λτ − ψQ(λ), (9)

EP (τ) = ψ∗P (τ) , sup
λ∈R

λτ − ψP (λ) = sup
λ∈R

λτ − ψQ(1 + λ) = EQ(τ)− τ.

Then Chernoff bound gives that for all τ ∈ [−D(Qn‖Pn), D(Pn‖Qn)] and ∆ ≥ 1,

P

{
∆∑
i=1

Xi ≤ ∆τ

}
≤ e−∆EP (τ), P

{
∆∑
i=1

Yi ≥ ∆τ

}
≤ e−∆EQ(τ). (10)

Note that EP and EQ are convex and monotone functions, such that as τ increases from
−D(Qn‖Pn) to D(Pn‖Qn), EQ(τ) increases from 0 to D(Pn‖Qn) and EP (τ) decreases from
D(Qn‖Pn) to 0. The following assumption postulates a quadratic lower bound of EP at the bound-
ary:

Assumption 2 There exists an absolute constant c > 0, such that for all η ∈ [0, 1],

EP ((1− η)D(Pn‖Qn)) ≥ cη2D(Pn‖Qn). (11)

Remark 6 (Generality of Assumption 2) Note that EP (τ) is convex with minimum 0 and cur-
vature (second-order derivative) 1/VarP (log(dPn/dQn)) at τ = D(Pn‖Qn). In view of Taylor
expansion of EP (τ) at τ = D(Pn‖Qn), Assumption 2 essentially ensures that EP (τ) is bounded
from below by a quadratic parabola with curvature at least Ω(1/D(Pn‖Qn)), giving us the desired
stability on the error exponent in the large deviation analysis of log-likelihood ratios at τ close to
D(Pn‖Qn). When the weight distributions are Gaussian, EP (τ) is exactly a quadratic parabola
with curvature 1/(2D(Pn‖Qn)) at τ = D(Pn‖Qn). Thus Assumption 2 holds. It can also be shown
that Assumption 2 is satisfied whenever the distribution of log(dPn/dQn) under Pn is sub-Gaussian
with proxy variance O(D(Pn‖Qn)) (see Hajek et al. (2017), Section 3).

Theorem 7 (Almost exact recovery) If Assumption 2 holds, k log k = o(log n) and

lim inf
n→∞

kD(Pn‖Qn)

log n
> 1, (12)
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then the MLE (7) achieves almost exact recovery. Conversely, if k = O(log n) and almost exact
recovery is possible, then

lim inf
n→∞

kD(Pn‖Qn)

log n
≥ 1. (13)

Theorem 7 should be compared with the exact recovery threshold lim inf(2αn/ log n) > 1 for
2 ≤ k ≤ no(1); the latter is always stronger, since

αn = −2 log

∫ √
dPndQn = −2 logEPn

√
dQn
dPn

≤ −2EPn log

√
dQn
dPn

= D(Pn‖Qn),

by Jensen’s inequality. Unlike exact recovery, the almost exact recovery threshold is inversely pro-
portional to k. Intuitively, this is because almost exact recovery only requires one to distinguish the
latent 2k-NN graph x∗ from those 2k-NN graphs that differ from x∗ by Ω(kn) edges; in contrast, as
we show in Section 2.2 in the arXiv version, the condition for exact recovery arises from eliminating
those solutions differing from x∗ by four edges.

2.3. Proof sketch of the results on recovery thresholds

To prove Theorem 5 and Theorem 7, we need to introduce the notion of difference graph, which
encodes the difference between a proposed 2k-NN graph and the ground truth. Given x, x∗ ∈
{0, 1}(

n
2), let G = G(x) be a bi-colored simple graph on [n] whose adjacency vector is x − x∗ ∈

{0,±1}(
n
2), in the sense that each pair (i, j) is connected by a blue (resp. red) edge if xij − x∗ij = 1

(resp. −1). See Fig. 2 for an example. By definition, red edges in G(x) are true edges in x∗ that are
missed by the proposed solution x, and blue edges correspond to spurious edges that are absent in
the ground truth.

(a) (b) (c)

Figure 2: An example for a difference graph G. From left to right: (a) The 2k-NN graph x∗ corre-
sponding to the Hamiltonian cycle (1, 2, 3, 4, 5, 6, 7, 8, 1); (b) The 2k-NN graph x corresponding to
the Hamiltonian cycle (1, 4, 3, 5, 6, 8, 7, 2, 1). (c) The difference graph G formed by x − x∗. The
red (thick) edges stand for edges that in x∗ but not x, while the blue (thin) edges are in x but not x∗.

A key property of difference graphs is the following: Since 2k-NN graphs are 2k-regular, the
difference graph G is balanced, in the sense that for each vertex, its red degree (the number of
incident red edges) coincides with its blue degree. Consequently, G has equal number of red edges
and blue edges, and the number of red (or blue) edges measures the closeness of x to x∗. Denote

X∆ = {x ∈ X : d(x, x∗) = 2∆} = {x ∈ X : G(x) contains exactly ∆ red edges} . (14)

8
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In particular, {X∆ : ∆ ≥ 0} partitions the feasible set X . The analysis of the MLE relies crucially
on bounding the size of X∆. To see this, note that by the definition of the MLE,

P {x̂ML 6= x∗} ≤ P {∃x 6= x∗ : 〈L, x− x∗〉 ≥ 0} ≤
∑
∆≥2

P {∃x ∈ X∆ : 〈L, x− x∗〉 ≥ 0} . (15)

Thus the MLE achieves exact recovery if the right-hand side of (15) is of order o(1). Similarly, for
the MLE to achieve almost exact recovery we need

P {d(x̂ML, x
∗) ≥ 2εnnk} ≤

∑
∆≥εnnk

P {∃x ∈ X∆ : 〈L, x− x∗〉 ≥ 0} (16)

to be of order o(1) for some sequence εn going to 0. Naturally we would want to bound the sum-
mands of (15) and (16) via a union bound, which calls for an upper bound on the size of X∆.

Following similar arguments as in (Bagaria et al., 2020, Sec. 4.2), we can prove a simple bound

|X∆| ≤ (4kn)∆, (17)

resulting in a condition that is suboptimal compared to the desired (8) by a factor of 2 when k ≥ 2.
To achieve the sharp threshold for exact recovery, (17) can be significantly improved by a delicate
combinatorial argument:

|X∆| ≤ 2
(
Ck17n

)∆/2 (18)

for some universal constant C. The full proof of (18) is provided in Section 2.3 of the arXiv version,
and constitutes the most crucial part of the argument. The key idea is to count the red edge sets and
blue edge sets separately. For a 2k-NN graph x, let Ered(x) denote the set of red edges in G(x).
Define

Ered(∆) = {Ered(x) : x ∈ X∆} , X (Ered) = {x ∈ X∆ : Ered(x) = Ered} .

To count the members in X∆, we first enumerate the set of red edges; then for a fixed set of red
edges we enumerate the 2k-NN graphs that are compatible with it. In particular, we show that for
all ∆ ≥ 2 and Ered ∈ Ered(∆),

|Ered(∆)| ≤ (96k2)∆

(
kn

b∆/2c

)
, |X (Ered)| ≤ 2(32k3)2∆∆∆/k. (19)

The desired bound (18) immediately follows.
Proof of the sufficiency part for exact recovery: For each x ∈ X∆, the law of 〈L, x − x∗〉

only depends on ∆: 〈L, x − x∗〉 d
=
∑

i≤∆(Yi − Xi), where Xi’s and Yi’s are i.i.d. copies of

log dPn
dQn

under Pn and Qn, respectively, and d
= denotes equal in distribution. By the Chernoff

bound, P{
∑

i≤∆(Yi −Xi)} ≤ exp(−αn∆), where αn is defined in (1). Using (18) and the union
bound we have

P {∃x ∈ X∆ : 〈L, x− x∗〉 ≥ 0} ≤ 2
(
Ck17n

)∆/2
exp(−αn∆). (20)

Substituting (20) into (15) yields that P{x̂ML 6= x∗} → 0 provided that αn− 1
2 log(Ck17n)→ +∞.

Proof of the sufficiency part for almost exact recovery: For almost exact recovery we only
need to rule out x̂ML ∈ X∆ for some ∆ ≥ εnnk. In this range, there is a large difference between

9
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|Ered(∆)| and |X∆|. Indeed from (19), there may be up to 2(32k3)2∆∆∆/k members of X∆ with
the same set of red edges. Hence for large ∆, it is more advantageous to separate the contributions
from the red edges and blue edges. We have for all τ ∈ R,

P {∃x ∈ X∆ : 〈L, x− x∗〉 ≥ 0} ≤ |Ered(∆)|P

∑
i≤∆

Xi ≤ ∆τ

+ |X∆|P

∑
i≤∆

Yi ≥ ∆τ


(10)
≤ |Ered(∆)| e−∆EP (τ) + |X∆| e−∆EQ(τ). (21)

To balance out the two terms in (21), the exponential tilting parameter τ is chosen so that EQ(τ) is
large. Given thatEQ(τ) is an increasing function on [−D(Qn‖Pn), D(Pn‖Qn)], we choose τ close
to D(Pn‖Qn). Under the assumption lim inf(kD(Pn||Qn)/ log n) > 1, we have kD(Pn||Qn)(1−
η) ≥ log n for some η ∈ (0, 1). Set τ = (1 − η)D(Pn||Qn), εn = 1/(kD(Pn||Qn)), and use the
bounds in (19) to further upper bound both terms in (21) by exp(−∆Ω(D(Pn||Qn))). It follows
from (16) that

P {d(x̂ML, x
∗) ≥ 2εnnk} ≤ 2

∑
∆≥εnnk

exp (−∆Ω(D(Pn||Qn))) = exp(−Ω(n)) = o(1).

Proof techniques for the necessary conditions: The bottleneck for exact recovery happens at
∆ = 2. The set X∆ consists of difference graphs formed by reversing the order of two adjacent
vertices on the permutation σ∗. In total there are n such difference graphs and they are close to being
independent. As a result the union bound in (20) is almost tight for the ∆ = 2 summand, so that
the sufficient condition for exact recovery turns out to also be almost necessary. For almost exact
recovery, the necessary condition follows from a mutual information and rate-distortion argument.
See Section 2.2 and Section 3.2 in the arXiv version for the full proofs.

3. Efficient recovery algorithms

3.1. Efficient recovery algorithms for the general model

For simplicity we focus on the hidden 2k-NN graph model with Gaussian weight distributions
Pn = N (µn, 1) and Qn = N (0, 1) for µn > 0. Analysis in this section can be extended to general
weight distributions. From Theorems 5 and 7, under the Gaussian model, the sharp thresholds for
exact recovery (for 2 ≤ k ≤ no(1)) and almost exact recovery (for 1 ≤ k ≤ o(log n/ log log n)) are

lim inf
n→∞

µ2
n

2 log n
> 1, and lim inf

n→∞

kµ2
n

2 log n
> 1, (22)

respectively. Since the log likelihood ratio is given by Le = log dPn
dQn

(we) = µnwe − µ2
n, the MLE

(7) simplifies to

x̂ML = argmaxx∈X 〈w, x〉. (23)

In the special case of k = 1, this reduces to the max-weighted Hamiltonian cycle problem. The
previous work (Bagaria et al., 2020) analyzes its 2-factor integer linear program (ILP) relaxation
and fractional 2-factor linear program (LP) relaxation, and show that they achieve the sharp exact
recovery threshold lim infn→∞

µ2n
4 logn > 1. This motivates us to consider the ILP and LP relaxation

for general k.

10
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2k-factor ILP relaxation By relaxing the 2k-NN graph constraint in the MLE (23) to a degree
constraint, we arrive at the following 2k-factor ILP:

x̂2kF = argmaxx 〈w, x〉 (24)

s.t.
∑
v∼u

x(u,v) = 2k, ∀u,

xe ∈ {0, 1}, ∀e

where the first constraint enforces that every vertex has degree 2k. It is known that for constant k,
the ILP (24) can be solvable in O(n4) time (Letchford et al., 2008).

To analyze x̂2kF, note that each feasible solution x to the ILP is a 2k-regular graph. Therefore,
the difference graph x − x∗ is still balanced and the simple bound (17) continues to hold: |Y∆| ≤
(4kn)∆, where Y∆ is the collection of 2k-regular graphs x such that the difference graph x − x∗
contains exactly ∆ red edges. Moreover, for x ∈ Y∆, 〈w, x− x∗〉 ∼ N (−∆µn, 2∆). Hence from
the union bound

P{x̂2kF 6= x∗} ≤
∑
∆≥1

(4kn)∆ exp

(
−∆µ2

n

4

)
=
∑
∆≥1

exp

(
−∆

(
µ2
n

4
− log(4kn)

))
.

We conclude that when 2 ≤ k ≤ no(1), x̂2kF achieves exact recovery if lim infn→∞ µ
2
n/(4 log n) >

1, which is only off by a multiplicative factor of 2 compared to the sharp threshold (22).

LP relaxation By further relaxing the integer constraint in x̂2kF, we arrive at the following LP:

x̂LP = argmaxx 〈w, x〉

s.t.
∑
v∼u

x(u,v) = 2k, ∀u,

xe ∈ [0, 1], ∀e.

We claim that even though x̂LP is a relaxation of x̂2kF, it still achieves exact recovery for 2 ≤
k ≤ no(1) when lim infn→∞ µ

2
n/(4 log n) > 1. That is because firstly, the feasible set of the LP

is a fractional 2k-factor polytope, the entries of whose extreme points are all half-integrals by the
determinant analysis analysis in (Balinski, 1965, p 280). That is, (x̂LP)e ∈ {0, 1/2, 1} for all e.
Moreover, for a half-integral 2k-factor graph x, the difference graph x−x∗ can be represented by a
balanced multigraph with edge multiplicity at most 2 (we refer the reader to Bagaria et al. (2020) for
details). The rest of the proof follows exactly from the proof of (Bagaria et al., 2020, Theorem 1).

To sum up, both x̂2kF and x̂LP achieve exact recovery under the condition lim infn→∞ µ
2
n/(4 log n) >

1. Whether they can achieve almost exact recovery under weaker conditions remains open.

Simple thresholding To partially address the problem of almost exact recovery, we consider a
naı̈ve thresholding estimator x̂TH given by

x̂TH(e) = 1
{
we >

√
(2 + εn) log n

}
,

where the sequence εn will be later specified. For each edge e in the true 2k-NN graph x∗, we ∼
N (µn, 1) and thus

P{x̂TH(e) = 0} ≤ exp
(
−(µn −

√
(2 + εn) log n)2/2

)
;

11
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Similarly for edge e not in x∗,

P{x̂TH(e) = 1} ≤ exp(−(
√

(2 + εn) log n)2/2) = n−(1+εn/2).

Recall that d(x̂TH, x
∗) =

∑
e 1{x̂TH(e) 6= x∗(e)}. We have

E [d (x̂TH, x
∗)] ≤ kn exp

(
−(µn −

√
(2 + εn) log n)2/2

)
+ n2 · n−(1+εn/2).

Hence for E(d(x̂TH, x
∗)) to be of order o(nk), it suffices to choose εn such that µn−

√
(2 + εn) log n =

ω(1) and εn log n = −2 log k+ω(1). Such an εn sequence exists as long as µn =
√

2 log n− 2 log k+
ω(1). In other words, the estimator x̂TH achieves almost exact recovery under the condition µn =√

2 log(n/k) + ω(1), which is optimal for k = 1 in view of (22).
It is worth pointing out that x̂TH may not be a valid 2k-NN graph. One can of course consider

the modified estimator by projecting x̂ to the set of 2k-NN graphs; however, it is unclear whether
this can be done in polynomial time. It is an interesting open problem whether a computationally ef-
ficient 2k-NN graph estimator can be obtained from x̂TH and still inherits the almost exact recovery
guarantee µn =

√
2 log(n/k) + ω(1).

In passing, we remark that although spectral methods have been successfully used to recover
the hidden structures based on the principal eigenvectors of the observed graph for a variety of
problems such as clustering and community detection, the spectral methods are highly suboptimal
in our model when k = no(1), as the adjacency matrix of the 2k-NN graph is full-rank and has a
vanishing eigen-gap (See Section 4.1 in the arXiv version for details).

3.2. Achieving the sharp threshold for exact recovery under the small-world model

In this section we introduce a polynomial-time algorithm that attains the exact recovery threshold
under the Watts-Strogatz small-world model. Recall that Pn = Bern(p) and Qn = Bern(q), where

p = 1− ε+
2εk

n− 1
and q =

2εk

n− 1
. (25)

The observed graph w ∈ {0, 1}(
n
2) can be viewed as a noisy version of the true 2k-NN graph x∗.

By Theorem 5, for 2 ≤ k ≤ no(1), the sharp threshold for exact recovery is lim inf(−2 log ε/ log n) >

1, i.e., ε ≤ n−
1
2
−Ω(1). We give a polynomial-time algorithm that succeeds under this condition.

Note that to exactly recover x∗, it suffices to recover the corresponding Hamiltonian cycle identified
by a permutation σ∗. To recover σ∗, the algorithm works by first determining the neighborhood of
one vertex and their ordering on the Hamiltonian cycle, and then sequentially finding the remaining
vertices to complete the cycle in a greedy manner. See Section 4.2 in the arXiv version for a detailed
description of the algorithm and the proof that it achieves the sharp threshold for exact recovery.
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