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Abstract

Convex optimization with feedback is a frame-
work where a learner relies on iterative queries
and feedback to arrive at the minimizer of a con-
vex function. The paradigm has gained signifi-
cant popularity recently thanks to its scalability
in large-scale optimization and machine learning.
The repeated interactions, however, expose the
learner to privacy risks from eavesdropping ad-
versaries that observe the submitted queries. In
this paper, we study how to optimally obfuscate
the learner’s queries in convex optimization with
first-order feedback, so that their learned opti-
mal value is provably difficult to estimate for the
eavesdropping adversary. We consider two formu-
lations of learner privacy: a Bayesian formulation
in which the convex function is drawn randomly,
and a minimax formulation in which the function
is fixed and the adversary’s probability of error is
measured with respect to a minimax criterion.

We show that, if the learner wants to ensure the
probability of the adversary estimating accurately
be kept below 1/L, then the overhead in query
complexity is additive in L in the minimax for-
mulation, but multiplicative in L in the Bayesian
formulation. Compared to existing learner-private
sequential learning models with binary feedback,
our results apply to the significantly richer fam-
ily of general convex functions with full-gradient
feedback. Our proofs are largely enabled by tools
from the theory of Dirichlet processes, as well as
more sophisticated lines of analysis aimed at mea-
suring the amount of information leakage under a
full-gradient oracle.
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1. Introduction
Convex optimization with feedback is a paradigm in which
an learner repeatedly queries an external data source in
order to identify the optimal solution of a convex function.
The interactive nature of the framework is a double-edged
sword. On the one hand, the iterative optimization methods
offers inherent scalability since the learner is not required
to possess the entire function from the start. As such, it
has found applications in large-scale distributed machine
learning systems, such as Federated Learning (McMahan
et al., 2017; McMahan & Ramage, 2017), where a learner
interacts with millions of individual users (data providers)
in order to perform training. On the other hand, the repeated
interactions with external entities exposes the learner to
potential adversaries who may steal the learned model by
eavesdropping on the queries exchanged during the training
process, a woe especially poignant when the system involves
a large number of data providers, many of which could be
an eavesdropper in disguise ((Juuti et al., 2019), (Kairouz
et al., 2019, Section 4.3)).

To address challenges in protecting the learner’s privacy, a
recent line of research proposed the framework of Private
Sequential Learning, aimed at quantifying the extra query
complexities the learner has to suffer in order to ensure the
submitted queries provably conceal the learned value (Tsit-
siklis et al., 2018; Xu, 2018; Xu et al., 2019). The model
is centered around a binary search problem where a learner
tries to estimate an unknown value X∗ ∈ [0, 1] by sequen-
tially submitting queries and receiving binary responses,
indicating the position of X∗ relative to the queries. Mean-
while, an adversary observes all of the learner’s queries but
not responses, and tries to use this information to estimate
X∗. The learner’s goal is to design a querying strategy with
a minimal number of queries so that she can accurately esti-
mate X∗ while ensuring that the eavesdropping adversary
cannot reliably estimate X∗. Progress has been made to-
wards understanding the optimal querying strategies in this
problem, and upper and lower bounds on the query complex-
ity have been developed that differ by additive constants in
the case where the learner’s queries are noiseless (Tsitsiklis
et al., 2018; Xu et al., 2019), and are order-wise optimal in
the case of noisy queries (Xu et al., 2019).

While the original binary search formulation provides valu-
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able insights, its simplifying assumption that the learner
only has access to binary feedback is a severe restriction
when it comes to modeling convex optimization. Indeed,
most real-world applications provide the learner access to
significantly richer feedback such as a full gradient (e.g.,
model training in machine learning). We elaborate further
on the potential applications of our model in Section 4.

The main purpose of the present paper is to take a step
towards closing this gap by studying learner-private opti-
mization with general convex functions and a full-gradient
oracle. In a nutshell, our results demonstrate that the most
prominent features of the query complexity in the binary
search model extend gracefully to the general convex op-
timization setting. However, to establish that this is the
case is far from trivial. A major difficulty stems from the
significantly enriched functional class: unlike in a binary
search problem where the ground truth is fully described
by a scalar (location of X∗), we will see that the private
query complexity crucially depends on the shapes of the
convex functions in a family, and not just the locations of
their minimizers.

This added richness necessitates the development of both
new problem formulations and analytical techniques. We
propose in this paper two new learner-privacy frameworks:
a new minimax formulation, as well as a Bayesian formu-
lation that generalizes earlier Bayesian private sequential
learning to a full-gradient oracle. A number of new tech-
niques are developed to analyze query complexity under
these formulations: we introduce tools from the theory of
Dirichlet processes to construct priors that convey the rich-
ness of the model. Tools from nonparametric Bayes theory
are deployed for the analysis under such prior distributions.
In addition to an enriched functional class, another funda-
mental challenge lies in the richness of the feedback. Unlike
the binary search model, the responses aligns with the loca-
tion of the query and the shape of the unobserved convex
function to a great extent. In the face of a more powerful
learner equipped with a full-gradient oracle, we rely on a
more sophisticated line of analysis to gauge the amount of
information the responses reveal. We will discuss in more
detail these ramifications in Section 4.

Relation to private information retrieval (PIR) and pri-
vate function retrieval (PFR) Our model formulation
bears some similarities with the PIR (Abadi et al., 1989;
Chor et al., 1995; Gasarch, 2004) and PFR (Mirmohseni &
Maddah-Ali, 2018) framework. However, there are major
distinctions which result in completely different dynamics
between the learner and the adversary. In PIR, the database
is assumed to contain a vector (xi)i≤N . The learner’s goal
is to learn the evaluation xi at some index i by querying the
database, while preventing the database (adversary) from
learning the value of i. The PFR problem is formulated sim-

ilarly, except that the database is indexed by functions. Note
that in PIR/PFC, the private index is assumed to be known
to the learner a priori. In contrast, in our framework, the
private information X∗ is something the learner herself is in
the process of discovering. As a result, our problem is posed
as a sequential learning problem. It has natural applications
in model stealing attack prevention, where eavesdropping
adversaries attempt to steal the model parameters by par-
ticipating in the model training process. The fundamental
difference between the two settings also leads to completely
different techniques for analysis. For us, privacy is ensured
by utilizing the adversary’s lack of knowledge on the re-
sponses, which is not the case in PIR/PFC.

Relation to data-owner privacy models Similar to Pri-
vate Sequential Learning, the private convex optimization
problem we consider diverges significantly from the existing
literature on differentially private iterative learning (Song
et al., 2013; Abadi et al., 2016; Agarwal et al., 2018; Jain
et al., 2012; Melis et al., 2019), a key difference being that
the latter focuses on protecting data owners’ privacy rather
than learner’s privacy. To protect data owners’ privacy, the
notion of differential privacy (Dwork, 2008) is often adopted
and privacy is often achieved by injecting calibrated noise
at each iteration of the learning algorithms. In contrast,
our work focuses on preventing the adversary inferring the
learned model, which is conceptually closer to recent studies
of information-theoretically sound obfuscation in sequential
decision-making problems (Fanti et al., 2015; Luo et al.,
2016; Tsitsiklis & Xu, 2018; Erturk & Xu, 2019; Tang et al.,
2020b). See (Xu et al., 2019) for a comprehensive discus-
sion on the distinction between data-owner privacy models
and this line of work.

2. The Model: Learner-Private Convex
Optimization

We now introduce our model, dubbed Learner-Private Con-
vex Optimization. The emphasis on the learner’s privacy
here is to distinguish our model from other forms of private
sequential learning, especially those that focus on protecting
the privacy of data owners (See proceeding discussion in
the Introduction).

Learner Let F be a family of R-valued convex functions
with domain [0, 1], such that all elements in F admit a
unique minimizer. Suppose there is an unknown truth f∗ ∈
F with the minimizer X∗ := arg minx f

∗(x). Fix n ∈ N.
Our decision maker is a learner who wants to identify X∗

by sequentially submitting a total of n queries in [0, 1] to an
oracle. For the ith query, qi, the oracle returns a response ri
that is equal to the gradient of f∗ at q:

ri = (f∗)′(qi). (1)
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If f∗ is not differentiable at qi, then ri is an arbitrary subgra-
dient of f∗ at qi. We assume that the learner is allowed to
introduce outside randomness, in the form of a random seed
Y that takes value in a finite discrete alphabet. Formally,
we denote by φ the learner’s strategy, which consists of
a sequence of mappings φ0, φ1, ..., φn−1 such that the ith
query is generated as a function of all previous responses
and the random seed:

qi = φi−1(r1, ..., ri−1, Y ). (2)

Once the querying process is terminated, the learner con-
structs an estimator of the optimizer X∗, X̂ , based on the n
responses. We say that the learner strategy φ is ε-accurate,
if

Pf
{∣∣∣X̂ − x∣∣∣ ≤ ε/2} = 1, ∀f ∈ F , (3)

where x is the minimize of f and the Pf indicates the in-
duced probability law when the truth f∗ is equal to f , and
the probability is measured with respect to the randomness
in the random seed, Y .

Adversary Meanwhile, an adversary is trying to learn
X∗ by eavesdropping on the learner’s queries: we assume
that the adversary observes all n queries submitted by the
learner, but not their responses. Denote by X̃ the adver-
sary’s estimator, which is a (possibly random) function of
(qi)i=1,...,n. Wary of such an adversary, the high-level ob-
jective of the learner are to (1) generate a query sequence
that is largely “uninformative” towards X∗, and (2) at the
same minimizing the number of queries needed, n.

We next formalize in what sense a learner’s strategy can
be private. Generally speaking, a learner strategy is private
if we can ensure that the adversary’s estimator X̃ is not
accurate. Importantly, different definitions of the adver-
sary’s accuracy will lead to drastically different definitions
of privacy, and consequently, distinct algorithms, guarantees
and domains of applications. In this paper, we will analyze
two privacy metrics, Bayesian and minimax, that parallel
the two paradigms in the statistics literature. The Bayesian
formulation extends the Bayesian private learning model in
(Tsitsiklis et al., 2018), while the minimax formulation is
new.

Minimax The truth f∗ is a deterministic but unknown
function in F . We say that a learner strategy φ is (δ, L)-
private if

sup
X̃

inf
f∈F

Pf
{∣∣∣X̃ − x∣∣∣ ≤ δ/2} ≤ 1/L, (4)

where the probability is measured with respect to the internal
randomness employed by the learner’s querying strategy
and that used in the adversary’s estimator. In other words,
the learner strategy is considered private if the adversary’s
minimax risk is large.

Bayesian The truth f∗ is drawn from a prior distribution
π, a probability distribution over F . We say that a learner
strategy φ is (δ, L)-private if

sup
X̃

P
{∣∣∣X̃ −X∗∣∣∣ ≤ δ/2} ≤ 1/L, (5)

where the probability is measured with respect to all random-
ness in the system, including the prior π and any internal
randomness employed by the learner’s querying strategy
and the adversary’s estimator.

Private query complexity Finally, we have come to the
main metric of interest. In both the minimax and the
Bayesian formulations, we define the optimal query com-
plexity, N(ε, δ, L), as the least number of queries necessary
for there to exist an ε-accurate learner strategy that is also
(δ, L)-private:

N(ε, δ, L) = min{n : ∃φ with at most n queries,
that is ε-accurate and (δ, L)-private}.

3. Main Results
3.1. Minimax formulation

We will assume that the function class F satisfies the fol-
lowing assumption:

Assumption 1 (Complexity of F ). Fix f ∈ F and interval
I ⊂ [0, 1] that contains the minimizer of f . Then, for every
x ∈ I , there exists g ∈ F such that g is minimized at x, and
the gradient of f and g coincide outside of I .

Assumption 1 is needed to rule out trivial cases where a
learner may exactly pinpoint the location of the minimizer
solely by looking at far-away gradients. We show in Section
5 that this richness assumption on F is in some sense neces-
sary. Examples of function classes that satisfy Assumption 1
include the set of all convex functions on [0, 1], and the set
of all piecewise-linear convex functions on [0, 1]. The next
theorem is our main result for the minimax formulation:

Theorem 1 (Minimax Query Complexity). Assume that F
satisfies Assumption 1. If 2ε ≤ δ ≤ 1/L, then1

2L+log
δ

ε
−2 ≤ N(ε, δ, L) ≤

{
2L+ log δ

ε if L ≥ log 1
δ

L+ log 1
ε o.w.

.

Note that if there were no privacy consideration, the min-
imax optimal query complexity would be log(1/ε). Thus
under the minimax formulation, a higher level of privacy L
leads to an additive overhead in the optimal query complex-
ity, that is at most about 2L.

1Here and subsequently log refers to logarithm with base 2.
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Remark 1 (Multidimensional Extensions). By considering
a separable class of functions, and using the `∞ norm to
measure the error of the learner and the adversary’s estima-
tors, Theorem 1 can be extended to d dimensions. The upper
and lower bounds of the query complexity take the same
form, with L replaced with L1/d. See the supplementary
material for the precise statement and proof.
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Figure 1. The left figure exemplifies realizations of F following
the Dirichlet Process with base function λ[0,1] and different con-
centration parameters α. The right figure shows the corresponding
convex functions f∗, with γ+ = 0.5 and γ− = −0.5.

3.2. Bayesian formulation

In the Bayesian formulation, we seek a function class and
prior distribution that are sufficiently rich to capture real-
world data, while at the same time amenable to analysis.
A good candidate in this respect is the so-called Dirichlet
process, a family of measures over non-decreasing func-
tions, which we will use to model the gradient function
of f∗. Dirichlet processes are fundamental objects in non-
parametric Bayes theory and widely used in Bayesian iso-
tonic regression for modeling monotone functions (Lavine
& Mockus, 1995; Bornkamp & Ickstadt, 2009; Neelon &
Dunson, 2004). We begin by defining a Dirichlet process:

Definition 1 (Dirichlet Process). Given a base probability
measure µ0 on X and a concentration parameter α > 0.
A random probability measure µ over X is said to follow
the Dirichlet process DP(µ0, α), if for any finite partition
of X = ∪i≤nXi,

(µ(X1), ..., µ(Xn)) ∼ Dir((αµ0(X1), ..., αµ0(Xn))),

where Dir(c) denotes the Dirichlet distribution over the
n-dimensional simplex ∆n−1 with density

gDir(c)(x1, . . . , xn) ∝
n∏
i=1

xci−1i , x ∈ ∆n−1. (6)

We now construct the prior distribution of f∗ using a Dirich-
let process. The prior is parameterized by two quantities:

1. a concentration parameter α > 0, which controls the
dispersion of the distribution of the minimizer;

2. a probability distribution η over [0, 1], which captures
the range of gradients of f∗. We assume that η admits
a density that is bounded from above and away from 0
(e.g., Unif[0, 1]).

Definition 2 (Bayesian Prior using Dirichlet Process). Fix
α and η. Denote by λ[0,1] the Lebesgue measure restricted
to [0, 1]. Then, the prior π corresponds to the following
procedure for generating f∗: 2

1. Sample γ+ from η. Set γ− = −γ+.

2. Sample µ from the Dirichlet process with concentration
parameter α and base distribution λ[0,1]. Let F be the
cumulative distribution function of µ.

3. Set f∗(x) = γ−x+
∫ x
0

(γ+−γ−)F (t)dt, for x ∈ [0, 1].

Note that (f∗(x))
′

= γ+ (2F (x)− 1) and thus the mini-
mizer X∗ of f∗ corresponds to the median of F , or more
precisely the smallest x for which F (x) ≥ 1/2. By con-
struction, F is a monotone simple function that consists
of countably many points of discontinuity that are dense
on [0, 1]. Its level of discreteness is modeled through the
concentration parameter α. For a small α, the increase of F
from 0 to 1 is mostly from a few abrupt jumps, and the con-
vex function f∗ resembles a piece-wise linear function with
finitely many pieces; as α grows, the increase of F becomes
more gradual, and f∗ starts to concentrate around a smooth
quadratic function. See Figure 1 for some realizations of
the distribution function F and the corresponding convex
function f∗ for different value of α.3

The following theorem is our main result for the Bayesian
formulation.

Theorem 2 (Bayesian Query Complexity). Fix α > 0. Sup-
pose that 2ε ≤ δ < 1

2LHα
, with Hα = (3 + 2e−1)α + 14.

Then

c1L log
δ

ε
≤ N(ε, δ, L) ≤ L log

δ

ε
+ c2L+ log

1

δL
,

where c1,c2 are positive constants that only depend on α
such that c1 → 1 as α→ 0.

The above theorem shows that, in the Bayesian formulation,
the query complexity overhead due to privacy constraints
scales multiplicatively with respect to the privacy level L.

2Note that in this definition we have restricted the gradients
to lie in [−1, 1] and the function f∗ to have zero intercept. Both
restrictions are without loss of generality, since any constant offset
will not change the location of a minimizer and similarly our results
will carry through if one wishes to incorporate a different gradient
scaling factor.

3To plot the convex functions together, we shift them by some
constants on the y-axis. This shift is irrelevant to the optimization
task since the response only contains gradient information.
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Note that this is substantially higher than the minimax set-
ting where such overhead is only additive in L. When
α→ 0, F converges to a step function and our query com-
plexity bounds recover the existing ones in the binary search
problem (Xu, 2018), showing that N(ε, δ, L) ∼ L log 1

ε as
ε→ 0 for fixed δ, L.

4. Discussion
In this section, we examine some real-world applications
of our privacy model and discuss some of the most salient
features of our main results and modeling assumptions.

Motivating examples A learner naturally suffers from pri-
vacy breaches if the learning process involves interactions
with third-party users. An example would be the afore-
mentioned Federated Learning framework. A typical Fed-
erated Learning model training process can be posed as
iterative optimization of some unknown function. Iterations
of model updates are generated from the feedback from a
large number of users (see e.g. the FederatedAveraging
algorithm (McMahan et al., 2017)). Since the model up-
dates (queries) are broadcasted to the participating users, the
learner is exposed to eavesdropping attacks. Due to the high
cost of large-scale model training, it is of great importance
to protect the learner from such privacy breaches, and do so
at a minimal cost (Kairouz et al., 2019).

Another potential application is pricing optimization, where
the goal is to learn the optimal release price of a product by
conducting market experiments at test price points (queries).
See (Xu et al., 2019; Tsitsiklis et al., 2018) for more de-
tailed discussions on the Federated learning and pricing
optimization examples.

Given the close connection between convex and monotone
functions, our work can also be applied to learning mono-
tone functions, for example to clinical dose-response stud-
ies (Ramgopal et al., 1993; Bornkamp & Ickstadt, 2009). In
dose-response analysis, the potency curve µ(x) is a mono-
tone function that models the treatment effectiveness as a
function of the dosage. An important problem is to estimate
the minimum effective dose (MED)

MED = min
x
{x : µ(x) > µ(0) + ∆}

for some threshold ∆. Note that the MED is the minimizer
X∗ of some unknown convex function f∗ (e.g. f∗(x) =∫ t
0
µ(t)dt− [µ(0)+∆]x). We also remark that the Dirichlet

process is widely used in isotonic regression for modeling
monotone functions (Lavine & Mockus, 1995; Bornkamp
& Ickstadt, 2009), as we do when modeling the gradient of
the convex function.

Applying the Bayesian and Minimax privacy criteria
Our results show that the two privacy criteria lead to dis-
tinct query complexity scalings, so it would be instructive to

understand in what application domain each metric is most
applicable. We expect the Bayesian formulation to be most
relevant in data-driven machine learning and optimization
with feedback such as in Federated Learning and pricing
optimization; the aforementioned dose-response analysis is
also a natural application of the Bayesian formulation due
to the close connection between potency curves and convex
functions. The minimax formulation is a new metric pro-
posed in this paper. One interesting application is in law and
criminal justice, where a prosecutor should have to prove
that the accuracy of any conclusion drawn from evidence
holds up regardless of the value of a certain hidden parame-
ter (Young et al., 2001). Other potential applications include
autonomous driving, where the performance guarantee of
an estimator needs to be valid in the worst case, for the sake
of public safety.

Comparisons with private sequential learning As men-
tioned in the Introduction, our convex optimization frame-
work generalizes the Private Sequential Learning (PSL)
model. Recall that in the PSL framework, the responses
are binary and only indicate whether the minimizer is to
the left or right of a given query; this is equivalent, in our
setting, to returning only the sign of the gradient. There
are several major differences that distinguish the convex
optimization framework from the PSL model. First and
foremost, the learner now has access to the entire gradient
instead of only its sign. A most direct implication of this
enriched information structure is that, when analyzing the
amount of information leakage of a learner strategy, we will
have to keep track of the distributions over target functions,
as opposed to only the minimizers, as was the case in PSL.
Moreover, when the learner has access to full gradients, it
is in principle possible for the learner to gather information
about the minimizer’s precise location even from queries
that are submitted far away from the minimizer, which was
not possible within bisection search. For instance, if the
underlying target function is known to be quadratic, then
two queries placed anywhere are sufficient to uncover the
minimizer. To address these complexities, our goal is to
precisely measure the amount of information about the min-
imizer that the learner and adversary may obtain from a
given sequence of queries. We will do so both by develop-
ing more sophisticated information theoretic arguments, and
by exploiting structural properties of the Dirichlet process.

Open questions Our results leave open a number of ques-
tions. For the Bayesian query complexity in one dimen-
sion, there remains a gap between the leading constants
in the upper and lower bounds, in the regime where α is
bounded away from zero. Generalizing the main theorems
to a multi-dimensional setting, where x ∈ Rd, d ≥ 2, is also
interesting and practically relevant. We take a first step in
this direction by extending our results to multi-dimensional
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separable functions (see supplementary material), while the
general case with non-separable objective functions remains
open and appears to be challenging. Our problem formu-
lation only considers first-order feedback. An interesting
direction is to consider convex optimization with more gen-
eral types of feedback, e.g., bandit feedback (Agarwal et al.,
2013).

A different notion of minimax privacy in (Tang et al.,
2020a) A recent work (Tang et al., 2020a) also aims to
extend the private sequential learning model of (Tsitsiklis
et al., 2018) to convex optimization. They use a different
notion of minimax privacy criteria that bear some superfi-
cial similarities to ours. However, the definition of privacy
in (Tang et al., 2020a) contains crucial errors that render
it vacuous, in the sense that there cannot exist any private
learner strategy satisfying that definition. To be precise,
here is Definition 2 of (Tang et al., 2020a): fix ε, δ ∈ (0, 1).
A learner strategy is said to be (ε, δ)-private if for any ad-
versary estimator X̃ and any truth f ∈ F ,

Pf (err(X̃, f) ≤ ε) ≤ δ, (7)

where err(·, ·) is a certain error function which measures
the discrepancy between the adversary estimator and the
true minimizer. For instance, in our example err(X̃, f) =

|X̃ − arg min f(x)|.

The problem with this privacy definition is that it can never
be satisfied by any learner strategy. Indeed, for any f ∈ F
with minimizer x∗, there always exists an adversary estima-
tor that trivially yields zero estimation error with probability
one: simply set X̃ = x∗, without even taking into account
the queries. Under this trivial estimator, we automatically
have Pf (err(X̃, f) = 0) = 1, so (7) cannot possibly hold
uniformly across all adversary estimators and all f . Unfor-
tunately, this would further suggest that the analysis and
conclusions in (Tang et al., 2020a) contain errors as well.

5. Proof of Main Results
We present in this section the proof sketch of our main
results and defer the full proof to the supplementary material
due to the space constraint.

5.1. Proof sketch under the Bayesian setting

Proof of the upper bound in Theorem 2. The upper bound
is established by analyzing a constructive algorithm. The
key challenge is that the prior distribution on X∗ is always
non-uniform under the Dirichlet process model. In partic-
ular, we can no longer simply apply the replicated search
strategy from (Xu et al., 2019), since the non-uniform distri-
bution of X∗ provides the adversary with additional prior
information.

To address this difficulty, our key algorithmic idea is to find
L intervals that occupy the same prior mass, while at the
same time are at least δ-separated from each other. One of
these intervals contains the true value X∗. On each of the
otherL−1 intervals, we sample a proxy forX∗ according to
the conditional distribution of X∗ restricted to the interval.

Let ν denote the distribution of X∗. For an interval
I ⊂ [0, 1], write νI for the probability distribution of ν
conditioned on I , i.e., dνIdν (x) = 1{x ∈ I}/ν(I). We de-
sign the following multi-phase querying strategy to attain
the desired upper bound.

Algorithm 1 Querying Strategy under the Bayesian Setting

1: Recursively query the median of the posterior distribu-
tion of X∗, until it is supported on an interval I with
ν(I) ∈ [2δLHα, 4δLHα].

2: Let κj be the j/L quantile of νI for j = 0, 1, ..., L and
let Ij = [κj−1, κj ] for j ∈ [L]. Query κ1, ..., κL−1 and
identify j∗ for which f ′(κj∗−1) ≤ 0 and f ′(κj∗) > 0
so that Ij∗ contains X∗.

3: Query the median mj of νIj for j ∈ [L]. If f ′(mj∗) >
0, let Jj = [κj−1,mj ] for all j; otherwise let Jj =
[mj , κj ].

4: For all j 6= j∗, sample Xj ∼ νJj independently. De-
note Xj∗ = X∗. For j = 1, ..., L, run the regular
bisection search on Jj to locate Xj up to ε-accuracy.

Phase 1 runs the median-based bisection search, which
is equivalent to the regular bisection search on U =
Fν(X∗) ∼ Unif[0, 1], where Fν is the CDF of ν. Note
that this step is always possible under the assumption
2δLHα ≤ 1. Phase 2 divides I intoL subintervals I1, ..., IL
with equal ν-probability and determines Ij∗ containing X∗.
Phase 3 is the key to ensure adequate separation between
the subintervals {Jj}j∈[L]. Phase 4 serves to achieve the
ε-accuracy while obfuscating the adversary.

The querying strategy outlined in Algorithm 1 is clearly
ε-accurate by design. We now show that it is also (δ, L)-
private. The high-level proof idea is to consider an adversary
who has access to X1, ..., XL. Using a genie-aided argu-
ment, we argue that this adversary is stronger than the one
who only has access to the query sequence. We then estab-
lish that the conditional distribution ofX∗ givenX1, ..., XL

is uniform on the Xj’s. Moreover, phase 3 of the querying
strategy ensures that the Xj’s are all δ-separated. There-
fore even with the additional knowledge of X1, ..., XL, the
adversary cannot estimate X∗ accurately with probability
higher than 1/L.

Proof of Privacy: Since the adversary only has access to
the query sequence q, any adversary’s estimator X̃ must
be a (random) function of q, that is X̃ ≡ X̃(q). Mean-
while by the design of our querying strategy, q can be com-
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pletely reconstructed fromX1, ..., XL. To see that, note that
I, {Ij}, {Jj} and all the queries in phase 4 are deterministic
functions of X1, ..., XL. Therefore there is a mapping ψ̃
such that X̃(q) = ψ̃(X1, ..., XL). Thus,

P
{∣∣∣X̃ −X∗∣∣∣ ≤ δ

2

}
= E

[
P
{∣∣∣X̃(q)−X∗

∣∣∣ ≤ δ

2

∣∣∣ q}]
≤ E

[
sup
ψ̃

P
{∣∣∣ψ̃(X1, ..., XL)−X∗

∣∣∣ ≤ δ

2

∣∣∣ X1, ..., XL

}]

≤ E

[
sup
x̃∈[0,1]

P
{
|x̃−X∗| ≤ δ

2

∣∣∣ X1, ..., XL

}]
. (8)

We claim that

(i) X∗ | X1, ..., XL ∼ Unif{X1, ..., XL}.

(ii) With probability 1, |Xi −Xj | > δ for all i 6= j.

Assuming the two claims hold (the proofs are deferred to
the supplementary material),

sup
x̃∈[0,1]

P
{
|x̃−X∗| ≤ δ

2

∣∣∣ X1, ..., XL

}
= sup
x̃∈[0,1]

1

L

∑
j≤L

1

{
|x̃−Xj | ≤

δ

2

}
≤ 1

L
,

where the equality is from (i) and the inequality is from (ii).
Continuing (8), we have P{|X̃−X∗| ≤ δ/2} ≤ 1/L. Thus
our strategy is (δ, L)-private.

Finally, the number of queries needed follows from a
straightforward bookkeeping calculation, which we defer to
the supplementary material.

Proof of the lower bound in Theorem 2. For the lower
bound, the challenge lies in tracking and quantifying the
amount of information the learner gains from the responses.
Compared to the binary search model, the full gradient
responses can potentially reveal too much information
to the learner. To tackle this challenge, our key proof
strategy is to find an event on which the learner cannot
gather information on X∗ too rapidly. The proof follows
the following main steps.

Step 1: quantify the learner’s information. We adopt the
notion of “learner’s intervals”, I0, I1, .... Here, I0 = [0, 1]
and Ii is the smallest interval that the learner knows to
contain X∗ after the first i queries.

Step 2: analyze the conditional distribution of X∗ over the
learner’s interval. This is the key step of the proof. We want

to find a “good” event B on which the conditional distribu-
tion is uniform and hence the learner does not possess too
much information on the location of X∗. To this end, we
crucially exploit the stick-breaking characterization of the
Dirichlet Process, which we describe next.

Given base distribution µ0 and scaling parameter α > 0,
draw {Xk}∞k=1 i.i.d. from µ0, and independently draw
{Vk}∞k=1 i.i.d. from Beta(1, α). From a stick of unit length,
break off the first stick of length V1; break off V2 fraction
of the remaining stick and repeat. In other words, denote by
βk the length of the k’th stick. We have

βk = Vk ·
∏

j≤k−1

(1− Vk)

and
∑∞
k=1 βk = 1. Let µ =

∑
k≥1 βkδXk be the discrete

distribution supported on {Xk}∞k=1, where δXk denotes the
point mass distribution at Xk. Then µ with the distribution
function of F follows the Dirichlet process DP(µ0, α).

Here is an intuitive explanation on how the stick-breaking
process helps us prove the uniformity of the conditional
distribution of X∗. Under our prior construction, X∗ is
at the median of F ∼ DP(λ[0,1], α), where we recall that
λ[0,1] is the Lebesgue measure on [0, 1]. Therefore, X∗

occurs at one of the stick-breaking locations Xk. Even
though the Xk’s are distributed i.i.d. uniformly in [0, 1],
X∗ itself does not follow the uniform distribution since
the index i that corresponds to X∗ is random. The key
observation is that the conditional distribution of X∗ is
uniform conditional on the event A that the length of the
longest stick is at least 1/2. To prove uniformity, we first
show that on the event A, the median X∗ must occur at
the Xk that corresponds to the longest stick. Moreover, by
independence of the stick lengths {βk}k≥1 and the locations
{Xk}k≥1, the distribution of the location corresponding
to the longest stick is uniform in [0, 1]. Furthermore, the
posterior distribution of X∗ remains uniform as queries are
sequentially submitted. The following Lemma 1 contains
the precise statement on uniformity.

Some notation is necessary before stating Lemma 1. Firstly,
denote by β(1), β(2), ... the order statistics of the lengths of
the sticks in the stick-breaking process corresponding to F .
Let

A =
{
β(1) ≥ 1/2

}
= ∪z≥1/2Az, Az ,

{
β(1) = z

}
.

Let J ⊂ [0, 1] be an arbitrary fixed interval.
Write [q−, q+] = Ii ∩ J . Let the event B =
B(z, J, y, i, ρ(i), ρ−, ρ+) encode the random instances of
F , Y and the first i responses, defined as

B =
{
Az, X∗ ∈ J, Y = y, r(i) = ρ(i), F (q±) = ρ±

}
.

See Figure 2 for an example of F and some quantities in the
definition of B.
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Lemma 1. For all z ≥ 1/2, J, y, i, ρ(i), ρ− < 1/2, ρ+ >
1/2, we have

L (X∗ | B) = Unif[q−, q+],

where L(·) denotes the (conditional) distribution.

1
ρ+

ρ−

1/2

X∗q− q+ 10 x

F

Figure 2. Conditional on X∗ ∈ J and the responses to the first i
queries, the range of X∗ is narrowed down to Ii ∩ J = [q−, q+].
Further conditioning on F (q−) = ρ− and F (q+) = ρ+, we show
that F restricted to [q−, q+] also follows a Dirichlet process after
appropriate scaling.

The proof of Lemma 1 crucially utilizes the self-similarity
property of the Dirichlet process. In short, it ensures that the
values of F inside of [q−, q+] conditional on information
outside of [q−, q+] also follows a scaled Dirichlet process.
Thus the learner cannot gain too much information about
the location of X∗ in [q−, q+].

Step 3: use Lemma 1 to control the speed at which the
learner’s interval shrinks. Divide [0, 1] into 2/δ subintervals
J1, ..., J2/δ of length δ/2, and let J∗ denote the subinterval
of contains X∗. In this step, by integrating over instances of
B, and letting J range over the 2/δ subintervals, we prove
the following lemma.

Lemma 2. For all i, we have that

E
(

log
|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A) ≥ −P {qi+1 ∈ J∗ | A} . (9)

Step 4: In this step, we apply Lemma 2 to obtain the desired
lower bound on the optimal query complexity. Let n be the
total number of queries submitted by the learner. By writing

log |In ∩ J∗| as a telescoping sum, we have that

E (log |In ∩ J∗| | A)

= log |I0 ∩ J∗|+
n−1∑
i=0

E
(

log
|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A)

= log
δ

2
+

n−1∑
i=0

E
(

log
|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A)
≥ log

δ

2
− E (number of queries in J∗ | A) . (10)

From the accuracy requirement, we must have |In| ≤ ε with
probability 1. Therefore

E
(
|In ∩ J∗|

∣∣∣ A) ≤ E
(
|In|

∣∣∣ A) ≤ ε/2,
so that by Jensen’s inequality,

E (log |In ∩ J∗| | A) ≤ logE(|In ∩ J∗| | A) ≤ log
ε

2
.

Combining the last display with (10) yields

E (number of queries in J∗ | A) ≥ log
δ

ε
. (11)

Consider an adversary who adopts the proportional-
sampling strategy (Xu, 2018). That is, suppose the adver-
sary’s estimator X̃ is sampled from the empirical distribu-
tion of the queries. For this particular X̃ ,

1

L
≥ P

{
X̃ ∈ [X∗ − δ/2, X∗ + δ/2]

}
=

E(number of queries in [X∗ − δ/2, X∗ + δ/2])

n
,

which gives a lower bound on the total number of queries:

n ≥ LE(number of queries in [X∗ − δ/2, X∗ + δ/2]).

Since J∗ ⊂ [X∗ − δ/2, X∗ + δ/2], combining the last
display with (11) yields that

n ≥ LE(number of queries in J∗) ≥ P (A)L log
δ

ε
.

We have thus arrived at the desired query complexity lower
bound with

c1 = P(A) = P
{
β(1) > 1/2

}
≥ P {β1 > 1/2} ,

where β1 ∼ Beta(1, α) is the length of the first stick fom
the stick-breaking characterization of the Dirichlet process.
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5.2. Proof sketch under the Minimax setting

Since the response contains the full gradient information,
the key challenge in the analysis is to track the amount of
information available to the learner. Note that aside from
the directional information 1{X∗ ≥ q}, the response for a
query q contains additional information on (f∗)′(q). The
key insight in the proof under the minimax setting, is that
under the Assumption 1 on the richness of the family of
functions, only the directional information is relevant to
the learning task. Therefore, it suffices to only track the
learner’s knowledge with the directional information from
the responses.

Starting with the upper bound, we design a querying strat-
egy that is ε-accurate, (δ, L)-private, and submits at most
max{2L+ log(δ/ε), L+ log(1/ε)} queries. In particular,
our querying strategy only utilizes the directional informa-
tion of the gradient responses. Firstly, note that since the gra-
dient responses contain the binary directional information,
the learner can always check whether an interval contains
X∗ by querying the two endpoints. We refer to a pair of
queries at q and q + ε as a guess. The key privacy-ensuring
mechanism is to check L guesses that are δ apart from each
other. By doing so, the learner manually plants L possible
locations for X∗ that an adversary cannot rule out without
observing the responses, thus achieving (δ, L)-privacy.

To prove the lower bound, we need to show that a querying
strategy that only utilizes the directional information can be
optimal. Firstly, let us give a heuristic argument of why only
the gradient information is relevant to learning X∗ under
Assumption 1. Given (f∗)′(a) < 0 and (f∗)′(b) > 0, under
Assumption 1, X∗ can be anywhere between a and b regard-
less of the value of the gradients (f∗)′(a), (f∗)′(b). We
should point out that the richness assumption is necessary.
For example, suppose F is the family of convex polyno-
mial functions with fixed degree d. Then the learner can
solve for the X∗ by submitting d distinct queries at arbitrary
locations, making both learning and obfuscation trivial.

The lower bound proof contains two main ingredients.

(a) Step 1: Rigorously justify the claim that under Assump-
tion 1, the learner does not benefit from the additional
gradient information aside from the one-bit directional
response. In particular, we show that the learner cannot
search faster than the bisection method on any interval
I ⊂ [0, 1]. Therefore, for each interval of length δ, it
takes at least log(δ/ε) queries in I to achieve ε-accuracy,
in the worst case.

(b) Step 2: Relate the adversary’s statistical performance to
the size of the information set (Tsitsiklis et al., 2018) of

a query sequence q, defined as

I(q) ={x ∈ [0, 1] : ∃f ∈ F and y,
s.t. x = arg min f, and q(f, y) = q}.

The information set contains all possible values of X∗

that could lead to the query sequence q. We show that
to ensure the adversary achieves δ-accuracy with prob-
ability at most 1/L, there must be some q for which
the δ-covering number of I(q) is at least L. Note that
from the ε-accuracy requirement, each member of I(q)
is sandwiched between a pair of queries in q that are at
most ε-apart. Therefore, q contains at least L such pairs
of queries, contributing a total of 2L queries.

After performing these two steps, some challenges remain.
The functions associated with q (in step 2) may not coin-
cide with the worst-case instances that arise from step 1.
Therefore, the remaining task is to combine the two lower
bounds log(δ/ε) and 2L. To this end, we show the exis-
tence of some interval I , such that for some f minimized
in I , the learner must pay not only the log(δ/ε) queries for
accuracy, but also the 2L queries for privacy. The high-level
idea behind the proof is to divide q into two sub-sequences
qbefore, qafter, before and after the 2L queries (in step 2) are
submitted. The key observation is that qbefore is shared by
a large class of functions whose minimizers lie in some
δ-length interval I . For all these functions, the cost of 2L
queries would have been committed in qbefore. For at least
one of them, an extra cost of log(δ/ε) queries must be paid
in qafter to achieve ε-accuracy.
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