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Abstract
Comparing DNA or protein sequences plays an important role in the functional analysis of

genomes. Despite many methods available for sequences comparison, few methods retain

the information content of sequences. We propose a new approach, the Yau-Hausdorff

method, which considers all translations and rotations when seeking the best match of

graphical curves of DNA or protein sequences. The complexity of this method is lower than

that of any other two dimensional minimum Hausdorff algorithm. The Yau-Hausdorff method

can be used for measuring the similarity of DNA sequences based on two important tools:

the Yau-Hausdorff distance and graphical representation of DNA sequences. The graphical

representations of DNA sequences conserve all sequence information and the Yau-Haus-

dorff distance is mathematically proved as a true metric. Therefore, the proposed distance

can preciously measure the similarity of DNA sequences. The phylogenetic analyses of

DNA sequences by the Yau-Hausdorff distance show the accuracy and stability of our

approach in similarity comparison of DNA or protein sequences. This study demonstrates

that Yau-Hausdorff distance is a natural metric for DNA and protein sequences with high

level of stability. The approach can be also applied to similarity analysis of protein

sequences by graphic representations, as well as general two dimensional shape

matching.

Introduction
Comparison of DNA sequences or protein sequences is a problem that has been studied in
biological sciences for years. It is an important mean to understand the nature of known pro-
teins and predict the unknown functions of the sequences. Many approaches have been pro-
posed for measuring the similarity between DNA sequences and protein sequences, including
multiple sequence alignment [1], moment vectors [2] and feature vectors [3]. Multiple
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sequence alignment uses dynamic programming techniques to identify the globally optimal
alignment solution, and is the most popular method in sequence comparison. However, the
sequence alignment problem is NP-hard, making it infeasible for studying large data-sets. The
moment vector approach characterizes the DNA space by assigning each DNA sequence a
vector consisting of moments obtained from its graphical curve. The distance between
sequences is then defined to be the Euclidean distance between their corresponding vectors.
This approach is effective and operates in linear time. There is no criterion yet to determine
the dimension of the moment vector, and the method does not present the DNA or protein
space accurately, as we will show in this paper. On the other hand, it is obvious that the corre-
spondence between feature vectors and DNA sequences is not one-to-one. Thus, the feature
vector method is not reliable due to loss of information about nucleotide. New methods on
sequence comparisons are being continuously developed. For example, Liu et al developed the
Python package for generating various modes of feature vectors for sequences [4]. This
method depends on fifteen types of feature vectors of sequence, which can be extremely large
for computing DNA sequences of long lengths. Zou et al proposed the centre star MSA strat-
egy for sequence alignment [5]. It offers new tools to address large-scale data for multiple
sequence alignment.

In this article, we establish a new approach to measure the distance between DNA (or pro-
tein) sequences: the Yau-Hausdorff method. This study arises from the graphical representa-
tion of DNA or protein sequences proposed by Yau [2, 6], in which each DNA or protein
sequence is represented by a curve in two-dimensional plane. The graphical representation
method results in one-to-one mapping between DNA sequences and the graphical curves.
However the question on how to measure the true distance between two DNA curves has not
been addressed up to now. The main contribution of this study is to introduce a new distance
between two dimensional curves defined by the DNA (or protein) sequences.

Although many techniques for two dimensional distance are available, presently the most
useful criterion to measure the similarity between two-dimensional point sets is the Hausdorff
distance [7, 8]. This distance can be used to determine the degree of resemblance between two
point sets that are superimposed. However the general Hausdorff distance does not satisfy our
requirements, since we wish to measure the minimum distance between two point sets under
rigid motions including translation and rotation. The minimum Hausdorff distance under
rigid motions is a well-defined metric and not only measure the distance of two point sets, but
also the similarity of their shapes. Mathematicians have tried to find efficient algorithms to
compute this distance, but none of the existing algorithms reaches the level of efficiency
required for analyzing long DNA (or protein) sequences.

In this article, we define the Yau-Hausdorff distance, a new metric which measures the simi-
larity between two-dimensional point sets. This new metric possesses some advantages: it is a
well-defined metric in mathematics; it is a natural generalization of the minimum one-dimen-
sional Hausdorff distance; it takes translation and rotation into full consideration; and it is
much more efficient to compute than the existing two-dimensional minimum Hausdorff dis-
tance. These advantages enable it to be a powerful tool for comparing two-dimensional point
sets, particularly for comparing DNA or protein sequences.

In the first section, we introduce two important methods: the Yau-Hausdorff distance and
the graphical representation of DNA (or protein) sequences. In the second section, results
from applying the Yau-Hausdorff method to several biological examples are presented and
compared with results achieved by previous approaches. In the third section we discuss the
advantages of the Yau-Hausdorff method and its broader applications.

Two Dimensional Yau-Hausdorff Distance
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Methods

Graphical representation of DNA sequences
Yau proposed a unique method to represent DNA sequences by a two dimensional graph [6].
Compared with previous methods, the graphical representation resolves sequence degeneracy
and is proven to eliminate circuit formation. We use Yau’s method to generate graphical repre-
sentations of DNA sequences. We chose following four vectors to represent the four nucleo-
tides A, G, C and T respectively: (1,2/3)! T, (1,1/3)! A, (1, −1/3)! C, (1, −2/3)! G. An
illustrative example is given in Fig 1 for the graphic representation of the first 500 bp human
mtochondrial DNA sequence.

Graphical representation of protein sequences
We use the approach proposed by Yau in 2008 [2] to generate graphical representations of pro-
tein sequences. Here is a brief description of the process.

A protein sequence is a string composed of 20 fundamental amino acids. Fauchere and
Pliska assigned a value to each of these 20 amino acids according to its hydrophobicity [9], and
Yau [2] mapped each value to a number between -1 and 1, such that the 20 numbers are uni-
formly distributed on the positive and the negative axes respectively.

Having determined the correspondence between each amino acid i and a real number yi 2
[−1,1], a vector can be defined with the horizontal component 1 and the vertical component yi.
Given a protein sequence, its graphical representation is the collection of the corresponding
vectors of the amino acids in the protein sequence, i.e., a point set with the size l+1, where l is
the sequence length.

Fig 1. Graphical representation of humanmitochondrial DNA (1–500 bp, GenBank:X93334).

doi:10.1371/journal.pone.0136577.g001
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The construction procedure for the graphical representation is natural in that it only collects
information based on the hydrophobicity scale of the 20 amino acids and the protein sequence,
and the information is then transformed into an intuitive two-dimensional graph, which natu-
rally reflects the biological characteristics of a protein.

Now that we have the graphical representation of DNA(or protein) sequences, all we need is
a criterion that measures the similarity between two curves to characterize similarity of
sequences. Huang proposed an approach using the feature vector as the numerical characteri-
zation of a DNA sequence [3]. The feature vector consists of a 10-dimensional vector formed
from the tallest peak, the lowest point, and the central points of the graphical representation of
a DNA sequence. However, the feature vector may not preserve the complete information in a
graphical representation because the feature vector does not contain enough information to
reconstruct the curve, and thus cannot fully represent the distribution of nucleotides in a DNA
sequence. Furthermore, translations or rotations of the curves are not considered in the
method, so the feature vector approach may be unreliable in DNA sequence comparison.

Our approach differs from the feature vector method in that we compare DNA or protein
sequences by measuring the similarity between graphical representations directly, so our
approach does not lose information within DNA or protein sequences. In addition, we take
translation and rotation into account when making comparisons. To accomplish this, we pro-
pose a new criterion for two-dimensional point set comparison, the Yau-Hausdorff distance.

Minimum two-dimensional Hausdorff distance
We first introduce Hausdorff distance, one of the most widely used criteria for point set com-
parisons [7]. For two point sets A and B, the Hausdorff distance between point A and point B
sets is defined by

hðA; BÞ ¼ max fmax
a2A

min
b2B

ja� bj; max
b2B

min
a2A

jb� ajg ð1Þ

Intuitively, this can be considered as the minimum distance for which at least one point in
set B is accessible from any point of set A, and vice versa.

When comparing graphical representations of DNA or protein sequences, we emphasize
the level of shape similarity. Thus, the ideal metric should consider the optimal fit under rigid
motions including translation and rotation. Since the general Hausdorff distance measures the
distance between two fixed sets, it shall not be a good candidate for an ideal metric although
the general Hausdorff distance is a defined metric.

The minimum two-dimensional Hausdorff distance as defined below is a well-defined met-
ric that indeed meets this requirement.

H2ðA;BÞ ¼ min
y2½0;2p�

min
t2R2

hðAþ t; ByÞ ð2Þ

where h is Hausdorff distance defined in Eq (1) and h(A+t,Bθ) stands for the Hausdorff dis-
tance between A and B after shifting A rightward by t and rotating B counterclockwise by θ.

The minimum two-dimensional Hausdorff distance is widely used in graph comparison, and
several algorithms have been proposed for this central distance. Some of the algorithms rely on
the assumption that there are only grid points in the point sets. These algorithms are mainly
used in pixel image matching such as photo identification andMRI analysis. But as comparing
graphical representations of sequences requires precise rotation of each point, clearly the grid
point assumption is not satisfied. The best matching of two shapes under translation and rota-
tion can be obtained by the minimumHausdorff distance. For two point sets with size m and n,
the time complexity of the minimumHausdorff distance by the Huttenlocher algorithm isO((m
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+n)6log(mn)) [10]. That algorithm for minimumHausdorff distance under Euclidean motion
was improved later with the complexity as O((m+n)5log2mn)) [8]. However, these algorithms
are still not feasible for comparing graphic curves of long DNA (or protein) sequences of more
than 10000 bp. These limitations highlight the need to improve the algorithm of minimum
Hausdorff distance. In this study, we present a new metric, the Yau-Hausdorff distance, for
matching two-dimensional curves under translation and rotation.

Yau-Hausdorff distance
We propose here the Yau-Hausdorff distance in terms of the minimum one-dimensional
Hausdorff distance [11]. The minimum Hausdorff distance between two one-dimensional
point sets A and B under translation is defined as

H1ðA;BÞ ¼ min
t2R

hðAþ t;BÞ ð3Þ

where h(A+t,B) is the Hausdorff distance between A and B after shifting A rightward by t. This
equation can be rewritten as

H1ðA;BÞ ¼ min
t2R

max fmax
a2Aþt

min
b2B

ja� bj; max
b2B

min
a2Aþt

jb� ajg ð4Þ

The Yau-Hausdorff distance is then defined in terms of H1(A,B):

DðA;BÞ ¼ max fmax
y

min
φ

H1ðPxðAyÞ; PxðBφÞÞ; max
φ

min
y

H1ðPxðAyÞ; PxðBφÞÞg ð5Þ

where Px(A
θ) is an one-dimensional point set representing the projection of A on the x-axis

after being rotated counterclockwise by θ.
The Yau-Hausdorff distance D defined above possesses the following properties:

1. D can be proven as an metric (the proof is available in the supplementary materials).

2. D is defined in terms of and inherits properties from the minimum one-dimensional Haus-
dorff distance. It is so far the most accurate criterion for two-dimensional point set
comparison.

3. D fully considers all translation and rotation in the two-dimensional space.

4. Using the projection of two-dimensional point sets, D successfully avoids calculation of the
Hausdorff distance of two-dimensional sets, and can be computed efficiently.

The Yau-Hausdorf distance is not equal to the two-dimensional minimum Hausdorff dis-
tances. In fact, the Yau-Hausdorf distance is the lower bound of the minimum two-dimen-
sional Hausdorff distances. The proof thatH2(A,B)� D(A,B) and an example showing this
inequality are provided in the supplementary materials.

Our algorithm to compute the Yau-Hausdorff distance D is as follows:
Let A = {a1, a2, . . ., an}⊂ R

3, B = {b1, b2, . . ., bm}⊂ R
3.

1. Fix a1. For i = 2, 3, . . ., n rotate A such that a1 ai//x−axis. We get θ1, θ2, . . ., θn−1.

2. Fix a2. For i = 3, 4, . . ., n rotate A such that a2 ai//x−axis. We get θn, θn+1, . . ., θ2n−3.

3. Fix a3. For i = 4, 5, . . ., n rotate A such that a3 ai//x−axis. We get θ2n−2, θ2n−1, . . ., θ3n−6

4. Randomly rotate 1000 times by y01; y
0
2; :::; y

0
1000.

5. Let the set of these rotations beM ¼ fy1; y2; :::; y3n�6; y01; y
0
2; :::; y

0
1000g.

Two Dimensional Yau-Hausdorff Distance
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6. Similarly we get the set of rotations for B N ¼ fφ1;φ2; :::; φ3m�6; φ
0
1; φ

0
2; :::; φ

0
1000g

7. For each θ 2M, we compute minφ 2 N H1(Px(A
θ),Px(B

φ)).

8. For all θ 2M, we get D1 = maxθ 2 Mminφ 2 N H1(Px(A
θ),Px(B

φ)).

9. Similarly we get D2 = maxφ 2 N minθ 2 M H1(Px(A
θ),Px(B

φ)).

10. Take D(A,B) = max{D1,D2}.

It shall be noted that the algorithms for calculating the one-dimensional minimum Hausdorff
distance include the algorithm proposed by G.Rote in 1991 [11] and the improved algorithm
proposed by Li [12]. Because of the improved efficiency in Li’s algorithm, we chose the Li’s
algorithm for computing the Yau-Hausdorff distance.

Similarity analysis of DNA or protein sequences by the Yau-Hausdorff
distance
Using the Yau-Hausdorff distance of graphic curves, similarity analysis of DNA or protein
sequences is performed by clustering the sequences into phylogenetic trees. The dissimilarity
matrix of given sequences is constructed from the Yau-Hausdorff distance of pairwise
sequences. UPGMA (Unweighted Pair Group Method with Arithmetic Mean) hierarchical
clustering method from a pairwise distance matrix is used to construct phylogenetic trees [13].
The resulting UPGMA tree reflects the structure and relationship of the sequences presented in
the distance matrix.

Results

DNA sequence comparison
We apply the Yau-Hausdorff method by comparing the DNA sequences of the COI genes, bar-
coding, H1N1, and the Influenza virus neuraminidase (NA) genes to verify the accuracy of our
method on its ability to cluster genomes. GenBank access numbers of DNA and protein
sequences used in this study are listed in S2 File.

COI dataset analysis. Paul D. N. Hebert [14] claimed that the mitochondrial gene cyto-
chrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals
[14]. First we applied our method on the COI gene of nine species, including one spider and
eight raptor. The average length of COI gene sequences is about 700 bp. These nine sequences
are transferred to graphical representations using Yau’s method [6], then the Yau-Hausdorff
distance between each two graphs is computed. We get the distance matrix and generated the
corresponding hierarchical tree. We also use the natural vector method [15] to test the result.
The distance provided by natural vector method is Euclidean distance of the vectors presented
by DNA sequences in 12-dimensional space R12, while Yau-Hausdorff method is based on cal-
culating the minimum Hausdorff distance of point sets coming from the graphical representa-
tion of sequences. The clustering results of both the Yau-Hausdorff method and the natural
vector method are compared as shown in Fig 2.

Callobius bennetti is a spider which should be separated from those eight raptor. Fig 2 dem-
onstrates that both methods successfully cluster Callobius bennetti outside the cluster of raptor.
In addition, the Yau-Hausdorff method clusters Accipiter francesiae and Accipiter gularis
closer than the natural vector method. According to biological classification, Accipiter france-
siae and Accipiter gularis belong to the same genus Accipiter. Therefore, it is reasonable that
these two species are closer to each other than other species. In this case, Yau-Hausdorff
method is more reliable than the natural vector method.

Two Dimensional Yau-Hausdorff Distance
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Barcoding DNA analysis. To compare the clustering accuracy by the Yau-Hausdorff
method and the feature vector method [3], we construct the UPGMA phylogentic trees of 18
species barcoding DNA data sets using the Yau-Hausdorff method and the feature vector
method, the results are shown in Figs 3 and 4, respectively. Fig 3 manifests that the species with
the same genus are grouped together accurately by Yau-Hausdorff method. The result is con-
sistent with the known biological classification, by which the 18 species belong to 9 genera and

Fig 2. Hierarchical tree of COI sequences (Yau-Hausdorff method and natural vector method).

doi:10.1371/journal.pone.0136577.g002
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each genus contains two species. The hierarchical tree in Fig 4 shows that Eunicida sp BOL-
DACJ5892 is gathered with genus Capitellida instead of Eunicida sp BOLDACJ9615 although
they belong to the same genus, while our method clearly clusters the 18 species into 9 genera.

The results acquired from Yau-Hausdorff method is better than that from feature vector
method. The feature vector does not preserve the information contained in a graphical repre-
sentation because the feature vector does not contain enough information to reconstruct the
curve from the vector, and thus cannot fully represent the distribution of nucleotides in a DNA
sequence. Furthermore, our method includes translations and rotations for the best match of
graphical curves. Thus our method offers a natural and accurate comparison of DNA
sequences through graphical representations.

H1N1 virus analysis. We perform test on the Yau-Hausdorff method on H1N1 virus. The
pandemic in 2009 was a new strain of swine-origin influenza virus(S-OIV). We analyze the
polymerase PB2 segment of S-OIV (swine-origin influenza virus) 2009 as well as avian and tri-
ple reassortment swine viruses. Many researchers have conducted comprehensive computa-
tional searches to determine the origin of S-OIV. Previous study [16] indicated that the PB2
segment of S-OIV, avian, and triple reassortment swine viruses share a similar evolutionary
history.

We construct the phylogentic tree from the Yau-Hausdorff distance between the 63 virus
genes (Fig 5). The hierarchical tree in Fig 5 contains four branches. The third and the fourth
clusters are the nearest, and their union is juxtaposed with the second cluster, while the first
cluster is the farthest from the other three. What we examine here is S-OIV 2009 PB2 genes,

Fig 3. Hierarchical tree of barcoding DNA sequences (Yau-Hausdorff method).

doi:10.1371/journal.pone.0136577.g003
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which are all placed into the third cluster. On the other hand, the third group contains some
Swine H3N2 and H1N2 triple reassortment viruses. These clustering results agree with previ-
ous study by Kingsford [16]. The fourth group is the closest cluster to the third group. This
group consists of human H1N1, triple reassortment H3N2, H2N1, chicken, and turkey virus. It
was pointed out by Kingsford’s paper [16] that the PB2 gene of avian virus, reassortment
H2N1, H3N2 and the S-OIV 2009 share evolutionary. The farthest group from S-OIV 2009 is
the first group. This group is composed mainly of H1N1 that has been circulating in swine
populations in Europe and Asia for decades. Again, these results coincide with Kingsford’s con-
clusion [16] which claimed that the Eurasian H1N1 has a different phylogenetic origin than
the 2009 outbreak strain sequences.

Influenza virus gene analysis. In the last example of DNA data set, we test the influenza
virus neuraminidase (NA) gene since sequence alignment does not work well for the influenza
virus NA genes. We applied our method to this data set which contains 52 sequences and got
the phylogenetic tree in Fig 6. The result obtained here is mainly consistent with the known
biological classification. The top of this figure includes some mallard, Zhejiang and winged-teal
influenza as a group. In the middle part of this figure, the Illinois influenza are gathered here.
The middle and lower parts are mainly composed of H7N9 viruses, and Hong Kong influenza
are clustered at the bottom of this figure. Compared with the sequence alignment method
which is time consuming and not effective for the influenza virus genes, this example shows
that the Yau-Hausdorff distance method works better than sequence alignment method.

Fig 4. Hierarchical tree of barcoding DNA sequences (Feature vector method).

doi:10.1371/journal.pone.0136577.g004
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Fig 5. Hierarchical tree of H1N1 virus sequences (Yau-Hausdorff method).

doi:10.1371/journal.pone.0136577.g005
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Fig 6. Hierarchical tree of the influenza virus NA genes(Yau-Hausdorff method).

doi:10.1371/journal.pone.0136577.g006
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Protein sequence comparison
To assess our method on characterization of the protein space, we apply the Yau-Hausdorff
method to classify the protein kinase C (PKC) family and the β-globin family.

In addition to hierarchical tree, we employ the natural graph to represent the classifications
of protein families [17]. In the natural graph, if there is a level-1 directed edge from protein A
to protein B, it means B is the closest to A among the entire family, thus they are categorized
into the same level-1 cluster. Similarly a level-2 directed edge means that one level-1 cluster is
the closest to another level-1 cluster. The distance between two graphs is defined as the mini-
mum distance between any protein in one graph and any element in the other. The length of
an edge that connects two proteins is proportional to the Yau-Hausdorff distance between
them. A shorter line indicates a higher level of similarity between two proteins. The natural
graph allows us to view the relationship between proteins and subfamilies in an intuitive way.

PKC family analysis. The protein kinase C family is a large group of enzymes regulating
the Ca2+-dependent pathways in cells [18]. PKC is classified into six subfamilies: cPKC, nPKC,
aPKC, PKCμ, PKC1 and PRK. We compute distance matrix from the Yau-Hausdorff distance
of each pair of the 124 protein sequences in the PKC family. The natural graph constructed
from the distance matrix is shown in Fig 7.

The graph shows that Yau-Hausdorff method classifies the 124 PKC sequences into three
level-3 clusters with one uni-directional edge and one bi-directional edge. The first cluster con-
tains all two typical subfamilies: cPKC (conventional PKC) and nPKC (novel PKC). The sec-
ond cluster contains all aPKC sequences. One bi-directional edge connects it to the first cluster,
indicating that among all PKC subfamilies, aPKC has the highest similarity with nPKC and
cPKC. This matches what would be expected from their biology. The third cluster contains all
the controversial PKC subfamilies. PKCμ is considered to be PKD actually; PKC1 are found on
fungi; PRK (PKC-related kinase)are like PKC1 but they are found on animals [17]. We observe
from the graph that this cluster is far from the first two. Actually the graph tells us that the min-
imum distance between the aPKC subfamily and the subfamilies cPKC and nPKC is 58.44,
which is also the longest edge in the graph.

The Yau-Hausdorff method classifies the PKC family accurately except that PKC No. 84,
which is a cPKC, is clustered into the cluster containing all aPKCs. This observation coincides
with the result given by the natural vector method on the same dataset [17]. That article
ascribes this abnormality yet undiscovered cPKCs that should appear between PKC No.84 and
the cPKC subfamily, making PKC No.77 the closest to No.84. Our result obtained from the
Yau-Hausdorff method verifies this prediction.

Examining the result more carefully we find that our clustering outcome is more accurate
than that of the natural vector method. Firstly, in the results of the natural vector method, the
nPKC subfamily is divided into two parts by two cPKC sequences, while the Yau-Hausdorff
method clusters the PKC family into complete subfamilies. Second, the natural vector method
cuts the PRK subfamily into two parts, while all pRKs are clustered into the same cluster, i.e.,
the same level-1 branch. That shows the Yau-Hausdorff method characterizes the distance
between proteins in a way that is closer to the actual nature of the proteins than the natural vec-
tor method does, resulting in a more accurate classification.

β-globin analysis. We perform phylogenetic analysis of β-globin from 50 species by the
Yau-Hausdorff method (Fig 8) and the moment vector method (Fig 9). [2].

The hierarchical tree in Fig 9 shows that Yau-Hausdorff method categorizes the 50 β-globin
sequences better than moment vector method. Even though the moment vector method divides
the data-set into three complete parts: mammals, birds and fish, it is not as accurate as the Yau-
Hausdorff clustering in regard to the classification into subfamilies of mammals. The moment

Two Dimensional Yau-Hausdorff Distance
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Fig 7. Natural graph the PKC family(Yau-Hausdorff method).

doi:10.1371/journal.pone.0136577.g007
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Fig 8. Hierarchical tree of 50 β-globin sequences (Yau-Hausdorff method).

doi:10.1371/journal.pone.0136577.g008
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vector approach leaves the subfamilies bovidae, artiodactyla, perissodactyl, whale and canidae
intermingled in the final results, while our method clearly clusters the 29 mammals into ele-
phants, bovidae, rodents, artiodactyla, perissodactyl, whales, primates, bears and canidae from
top to bottom. This result is in strong agreement with biological systematics, showing that our
algorithm accurately clusters the 50 species. We conclude that Yau-Hausdorff method gives a
more accurate result than the moment vector method.

The only outlier in our result is that Shark is clustered to a single cluster instead of being
group with other fish. Looking into the original data we find that the β-globin sequence of
shark is the only one in the data-set with length 142, while all the 49 other sequences are of
length 148. This is probably the cause of this outlier, since the algorithm generating the hierar-
chical tree clusters the closest branches together in each iteration. The β-globin sequence of
shark is far from all other 49 β-globin (verified by observing the distance matrix) because it is
shorter, and consequently it becomes branch clustered in the last step of the iteration. To cor-
rect this outlier, we represent the distance matrix with the natural graph clustering as shown in
Fig 10.

Fig 9. Hierarchical tree of 50 β-globin sequences (Moment vector method).

doi:10.1371/journal.pone.0136577.g009
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The natural graph in Fig 10 shows that although the edge from Shark to Catfish is the lon-
gest in the directed graph, shark is clustered into fish by a level-1 uni-directional edge, which is
what we expect. This example shows that the outlier can be resolved by the natural graph, dem-
onstrating advantage of the natural graph and accuracy of the Yau-Hausdorff method. In sum-
mary, our method provides a distance matrix that completely agrees with established biological
clustering of all 50 species.

Stability analysis
To analyze the stability of the Yau-Hausdorff method, we apply a random perturbation within
10% to the y-coordinates of each nucleotide (amino acid) in the graphical representation of
DNA (or protein) sequences. We repeat the tests on both DNA and protein data-sets several
times with perturbation, and observe no structural change in the hierarchical tree or the natural
graphical representation. This shows that Yau-Hausdorff distance is a natural metric with high
level of stability.

Noise perturbation analysis
We perform the noise perturbation analysis on the Yau-Hausdorff distance. We first construct
150 deletion mutations on random positions of an intron DNA sequence of length 350 bp. The
deletion mutation DNA sequences have lengths from 349 bp to 200 bp. The Yau-Hausdorff dis-
tances between each of the 150 mutation sequences and the original DNA sequence are shown in
Fig 11. The result shows that the correlation of Yau-Hausdorff distance and deletion length is
almost linear. This result indicates that the Yau-Hausdorff distance is robust when the complex-
ity of the graphic representations increases or noise is introduced in the representations.

Fig 10. Natural graph of 50 β-globin sequences(Yau-Hausdorff method).

doi:10.1371/journal.pone.0136577.g010
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Complexity analysis
Given two sequences with lengthsm and n, the computational complexity of the Yau-Haus-
dorff distance between these sequence curves is O(m+n) times the minimum one-dimensional
Hausdorff distance. For two sets ofm and n points, the complexity of their one-dimensional
minimum Hausdorff distance is O((m+n) log(m+n)) based on Li’s algorithm [12]. Therefore,
the complexity of our algorithm is O((m+n)2 log(m+n)). Existing algorithms which find the
minimum Hausdorff distance for point sets under Euclidean motion are highly complex, with
O((m+n)5 log2 mn)) for the fastest algorithm [8]. The Yau-Hausdorff distance method signifi-
cantly decreases computational complexity of finding the minimum Hausdorff distance
between two-dimensional shapes.

Discussion
In this study, the Yau-Hausdorff method provides more accurate results compared with the
existing methods. Unlike previous methods that attempt to numerically characterize DNA or
protein sequence graphical curves, the Yau-Hausdorff method measures the distance between
sequences by directly comparing the curves via the Yau-Hausdorff distance. It avoids potential
information loss caused by the transformation from graphical curves into numerical character-
izations. Our approach takes translations and rotations into consideration the best match of
graphical curves. It offers a more natural and accurate comparison of the sequence graphical
representations. In addition, since the Yau-Hausdorff method is based on graphical representa-
tions of DNA(or protein) sequences, it also has the advantage of being intuitive. The graphical
representation serves to intuitively depict the distribution of nucleotides (amino acids) in a
sequence, and our method inherits that property.

Fig 11. The relationship between Yau-Hausdorff distance and deletion length of sequence.

doi:10.1371/journal.pone.0136577.g011
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The minimum Hausdorff distance of shapes is an important measure for similarity compar-
ison and shape matching and retrievals, but computation of the Hausdorff distance in two and
higher dimensions is a challenging problem. We propose this novel solution to this problem
and prove that Yau-Hausdorff distance in d-dimensional Euclidean space Rd is also a metric
for d> 2 (proof available in S1 File). It has potential broad application prospects in measuring
the similarity of 2 or 3-dimensional curves, such as shape matching, image retrieval, and com-
parison of 3-dimensional protein structures.

Although the Yau-Hausdorff method has these advantages, it also has some limitations. The
phylogenetic tree constructed by this distance may contain uncertainties. For example, the phy-
logenetic tree in Fig 8 constructed by this distance showed that shark is not grouped with other
fish. Another problem is that the computation complexity is high if the sequences contain mil-
lions of nucleotides. We will continue to solve the limitations and improve the complexity of
the algorithm.

Conclusion
This article proposes a new approach for comparing DNA sequences and protein sequences.
We introduce two fundamental tools of our method: the graphical representation of DNA(or
protein) sequences and the Yau-Hausdorff distance. We then define the distance between two
sequences using the Yau-Hausdorff distance between the two-dimensional graphical represen-
tations of the sequences. Given a family of DNA(or protein), we use this approach to calculate
the distance between each pair of sequences, getting a distance matrix that contains informa-
tion about the family structure.

In the tests on both DNA and protein data-sets, we use hierarchical tree and natural graphi-
cal representation to analyze the distance matrix. Based on different kinds of datasets, our
results show that the Yau-Hausdorff method gives the most accurate clustering compared with
several other approaches including natural vector method, feature vector method, moment
vector method and sequence alignment method on both DNA and protein families. In addi-
tion, we perform our test repeatedly with perturbation. The perturbation does not affect our
results. We conclude that the Yau-Hausdorff method is a natural, accurate and stable approach
for comparing DNA sequences and protein sequences, and has general applications in shape
and image matching.
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