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1. Introduction

Consider the regression model

Y = Xb+ ε, ε ∼ N (0, In). (1)

The design matrix X is of dimension n× p. The vector Y ∈ R
n is the response

and b ∈ R
p is the unknown parameter. We are particularly interested in the case

where p > n, for which b itself is not identifiable. In such a setting identifiabil-
ity can be attained by adding a sparsity constraint, an upper bound on ‖b‖0,
the number of nonzero bi’s. That is, the model consists of a family of proba-
bility measures {Pb : b ∈ R

p, ‖b‖0 ≤ s∗}, and the observation Y is distributed
N (Xb, In) under Pb.

We are interested in posterior inference on the vector b, when Y is actu-
ally distributed N(Xβ, In) for some true sparse β. Throughout this paper the
notation β is reserved for the truth, a p-dimensional deterministic vector. The
notation b stands for the random vector with marginal distribution μ (a.k.a. the
prior) and conditional distribution μY (a.k.a. the posterior) given Y .

If p were fixed and X were full rank, classical theorems (the Bernstein-von
Mises theorem, as in [1, page 141]) gives conditions under which the posterior
distribution of b is asymptotically normal centered at the least squares estimator,
with covariance matrix (XTX)−1 under Pβ .

The classical theorem fails when p > n. Although sparse priors have been
proposed that give good posterior contraction rates [2] [3], posterior normality

3082

http://projecteuclid.org/ejs
https://doi.org/10.1214/19-EJS1605
mailto:xiaoqian.yang@yale.edu


High-dimensional Bayesian BvM 3083

of b is only obtained under strong signal-to-noise ratio (SNR) conditions, such as
those of Castillo el al. [2, Corollary 2], which forced the posterior to eventually
have the same support as β. Effectively, their conditions reduce the problem
to the classical, fixed dimensional case. However that is arguably not the most
interesting scenario. Without the SNR condition, Castillo et al. [2, Theorem 6]
pointed out that under the sparse prior, the posterior distribution of b behaves
like a mixture of Gaussians.

There is hope to obtain posterior normality results without the SNR condition
if one considers the situation where only one component of b is of interest, say
b1, without loss of generality. All the other components are viewed as nuisance
parameters. As shown by Zhang and Zhang [4] in a non-Bayesian setting, it is
possible to construct estimators that are efficient in the classical sense that

β̂1 = β1 +
XT

1 ε

‖X1‖22
+ op

(
1√
n

)
. (2)

Here and subsequently op(·) is a shorthand for a stochastically small order term
under Pβ and Xi denotes the i’th column of X. Similarly X−i denotes the
n× (p−1) matrix formed by all columns of X except for Xi. For J ⊂ [p] denote
by bJ the vector (bj)j∈J in R

|J|. Write b−1 for b[p]\{1}. The ‖ · ‖2 norm on a
vector refers to the Euclidean norm.

Approximation (2) is useful when ‖X1‖2 = O(
√
n), in which case the expan-

sion (2) implies weak convergence [5, page 171]:

‖X1‖2(β̂1 − β1) � N (0, 1) under Pβ .

Such behavior for ‖X1‖ is obtained with high probability when the entries of
X are generated i.i.d. from the standard normal distribution. More precisely,

Zhang and Zhang [4] proposed a two-step estimator β̂
(ZZ)
1 that satisfies (2) under

some regularity assumptions on X and no SNR conditions. The exact form of

the estimator β̂
(ZZ)
1 will be given in section 2.1. Zhang and Zhang required the

following behavior for X.

Assumption 1. Let γi = XT
1 Xi/‖X1‖22, and λn =

√
log p
n . There exists a

constant c1 > 0 for which
max
2≤i≤p

|γi| ≤ c1λn.

In addition, maxi≤p ‖Xi‖2 = O(
√
n).

Assumption 2. (REC(3s∗, c2)) There exist constants c′ > 0 and c2 > 2 for
which

κ(3s∗, c2) = min
J⊂[p],
|J|≤3s∗

inf
b �=0,

‖bJC‖
1
≤c2‖bJ‖1

‖Xb‖2√
n‖bJ‖2

> c′ > 0. (3)

Assumption 3. The model dimension satisfies

s∗ log p = o(
√
n).
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Remark 1. Assumption 2 is known as the restricted eigenvalue condition [6,
page 1710] required for penalized regression estimators such as the LASSO es-
timator [7, page 1] and the Dantzig selector [8, page 1] to enjoy optimal l1 and
l2 convergence rates. Note that assumption 2 forces ‖Xi‖2 > c′

√
n for all i ≤ p.

Therefore assumptions 1 and 2 imply that the lengths of all columns of X are
of order Θ(

√
n).

Remark 2. Assumptions 1 and 2 are satisfied with high probability when the
n × p entries of X are generated i.i.d. from a sub-Gaussian random variable
with a fixed sub-Gaussian parameter. Assumption 1 can be easily proved via
the Markov inequality. For the proof of assumption 2 see Mendelson et al. [9]
and Zhou [10].

Zhang and Zhang [4] provided the following theorem.

Theorem 1 ([4, Section 2.1, 3.1]). Under assumptions 1, 2 and 3, the estimator

β̂
(ZZ)
1 has expansion (2).

The goal of this paper is to give a Bayesian analogue for Theorem 1, in the
form of a prior distribution on b such that as n, p → ∞, the posterior distribution
of b1 starts to resemble a normal distribution centered around an estimator in
the form of (2). We provide the following bias corrected version of the sparse
prior proposed by Gao, van der Vaart, and Zhou [3].

The bias corrected prior distribution on b ∈ R
p:

1. Let the sparsity level s of b−1 obey the probability mass function π(s) ∝
Γ(s)

Γ(s/2) exp(−2Ds log e(p−1)
s ) for a positive constant D.

2. Denote the projection matrix onto span(X1) by H. Write W =(I−H)X.
Let S|s ∼ Unif (Zs := {S ⊂ {2, ..., p} : |S| = s,WS is full rank}).

3. Given S, let bS have density fS(bS) ∝ exp(−η‖WSbS‖2) for a positive
constant η. Set bSc = 0.

4. Let b1|b−1 ∼ N (−
∑

i≥2 γibi, σ
2
n) where σ2

n � ‖β‖1λn/‖X1‖2 and γi, λn

are as defined in assumption 1.

The following is the main result of this paper.

Theorem 2. Under assumptions 1, 2 and 3, for each constant η, there exists
a large enough constant D > 0 for which the prior distribution on b described
above gives a posterior distribution of ‖X1‖2(b1 − β̂1) that satisfies∥∥∥L(

‖X1‖2(b1 − β̂1)|Y
)
−N (0, 1)

∥∥∥
BL

→ 0 in Pβ , (4)

where β̂1 is an estimator of β1 with expansion (2).

Here ‖·‖BL denotes the bounded Lipschitz norm, which metrizes the topology
of weak convergence [11, page 323]. The bounded Lipschitz norm between two
probability measures P and Q on X is defined as ‖P −Q‖BL = supf |Pf −Qf |
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where the supremum is over all functions f : X → [−1, 1] with Lipschitz constant
at most 1.

An estimator β̂1 with expansion (2) is the appropriate centering for the pos-
terior distribution of b1 given Y . To see that, take the two-sided α-credible
interval as an example.

Recall that μY stands for the posterior distribution of b given Y . It is an easy
consequence of (4) that (by taking a sequence of bounded Lipschitz functions
approaching an indicator function):

∣∣∣∣μY

{
‖X1‖2

∣∣∣b1 − β̂1

∣∣∣ ≤ Φ−1

(
1 + α

2

)}
− α

∣∣∣∣ → 0 in Pβ , or

μY

{
b1 ∈

[
β̂1 −

Φ−1((1 + α)/2)

‖X1‖2
, β̂1 +

Φ−1((1 + α)/2)

‖X1‖2

]}
= α+ op(1).

On the other hand, for any estimator β̂1 with expansion (2), under the assump-
tion that ‖X1‖2 = O(

√
n),

Pβ

{
β1 ∈

[
β̂1 −

Φ−1((1 + α)/2)

‖X1‖2
, β̂1 +

Φ−1((1 + α)/2)

‖X1‖2

]}
= α+ o(1).

That is, the Bayesian’s credible interval and the frequentist’s confidence inter-

val are both
[
β̂1 − Φ−1((1 + α)/2)/‖X1‖2, β̂1 +Φ−1((1 + α)/2)/‖X1‖2

]
, which

covers the truth β1 roughly α proportion of the time. In other words, Theo-
rem 2 implies that the Bayesian inference on b1 and frequentist inference on β1

are aligned in the asymptotics.
We would like to point out that although our Bayesian analogue of bias cor-

rection matches the frequentist’s treatment in terms of statistical performance,
the from of posterior distribution involves up to 2p integrations and is therefore
very expensive to compute.

The paper is organized as follows. We begin by discussing the frequentists’
de-biasing techniques in section 2.1, including the two-step procedure developed
by Zhang and Zhang [4] and a one-step estimator. We show that the one-step
estimator also achieves de-biasing. In section 2.2 we use the form of the one-step
estimator to illustrate the intuition behind the construction of the bias corrected
prior distribution. The proof of our main result Theorem 2 is given in section 3.

2. Main results

2.1. How does de-biasing work?

This section describes the main idea behind the construction of the two-step de-
biasing estimator proposed by [4]. An estimator is proposed to provide another
way of interpreting the two-step procedure. The success of these estimators
inspired us to design a prior distribution that achieves de-biasing under the
same set of assumptions.
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In sparse linear regression, penalized likelihood estimators such as the LASSO
are often used and tend to give good global properties, such as control of the l1
loss:

Pβ

{
‖β̃ − β‖1 > Cs∗λn

}
→ 0 as n, p → ∞ for some C > 0, (5)

where λn is as defined in assumption 1. For example, Bickel et al. [6, The-
orem 7.1] showed that under the REC condition (assumption 2) the LASSO
estimator satisfies (5).

In general, penalized likelihood estimators introduce bias for the estimation
of individual coordinates. To eliminate this bias, Zhang and Zhang [4] proposed
a two-step procedure using the following idea. First find a β̃ that satisfies (5),
perhaps via a LASSO procedure. Then define

β̂
(ZZ)
1 = arg min

b1∈R

∥∥∥Y −X−1β̃−1 − b1X1

∥∥∥2
2
. (6)

Remark 3. The estimator given by (6) is not exactly the same as the one that

appears in [4]. Note that β̂
(ZZ)
1 can be equivalently written as

β̂
(ZZ)
1 = β̃1 +

XT
1 (Y −Xβ̃)

XT
1 X1

.

Compare with the estimator proposed by Zhang and Zhang [4] which takes the
form

β̂1 = β̃1 +
ZT
1 (Y −Xβ̃)

ZT
1 X1

, (7)

where Z1 is some pre-calculated vector, typically obtained by running penalized
regression of X1 on X−1 and taking the regression residual. Getting a Bayesian
analogue for (7) may be possible. But we choose to present our findings on the
simpler version (6) to better illustrate the idea behind the prior design.

The estimator in (6) essentially penalizes the size of all coordinates except

the one of interest. Under assumptions 1, 2 and 3, the two-step estimator β̂
(ZZ)
1

is asymptotically unbiased with expansion (2).
We show in the next theorem that the same asymptotic behavior can be

obtained in a single step. The idea of penalizing all coordinates but one is seen
more clearly here. By leaving one term out of the LASSO penalty, de-biasing is
achieved. This observation inspired us to construct our bias corrected prior (see
section 2.2) such that the parameter of interest is not penalized.

Theorem 3. Define

β̂ = arg min
b∈Rp

⎛
⎝‖Y −Xb‖22 + ηn

∑
i≥2

|bi|

⎞
⎠ .

Under assumptions 1, 2 and 3, if ηn is a large enough multiple of nλn, the one-
step de-biasing estimator β̂ achieves l1 control (5) and de-biasing of the first
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coordinate simultaneously. The estimator for β1 satisfies

β̂1 = β1 +
XT

1 ε

‖X1‖22
+ op

(
1√
n

)
. (8)

Proof. We will first show that β̂ satisfies (5). It is well known that when the
penalty involves all coordinates of b, then the bound on the l1 norm is true [6,
Theorem 7.1]. It turned out that leaving one term out the of penalty does not
ruin that property.

As in the proof of [6, Theorem 7.1], we compare the evaluation of the penalized

log-likelihood function at β̂ and the truth β using the definition of β̂.

∥∥∥Y −Xβ̂
∥∥∥2
2
+ ηn

∥∥∥β̂−1

∥∥∥
1
≤ ‖Y −Xβ‖22 + ηn‖β−1‖1.

Plug in Y = Xβ + ε, the above is reduced to

∥∥∥X(β̂ − β)
∥∥∥2
2
≤ 2

∑
i≤p

ξi(β̂i − βi) + ηn

(
‖β−1‖1 −

∥∥∥β̂−1

∥∥∥
1

)
,

where ξi = XT
i ε. With high probability |maxi≤n ξi| ≤ R = C2nλn, in which

case we have

∥∥∥X(β̂ − β)
∥∥∥2
2
≤ 2R

∥∥∥β̂ − β
∥∥∥
1
+ ηn

(
‖β−1‖1 −

∥∥∥β̂−1

∥∥∥
1

)
. (9)

From here we can bound ‖β−1‖1 − ‖β̂−1‖1 by ‖(β̂ − β)−1‖1 using the triangle
inequality. But since βSC

= 0, we can obtain a much tighter bound:

‖β−1‖1 −
∥∥∥β̂−1

∥∥∥
1
≤
∥∥∥(β̂ − β)S\{1}

∥∥∥
1
−
∥∥∥β̂SC\{1}

∥∥∥
1

=
∥∥∥(β̂ − β)S\{1}

∥∥∥
1
−
∥∥∥(β̂ − β)SC\{1}

∥∥∥
1
.

Combine with (9) to deduce that

∥∥∥X(β̂ − β)
∥∥∥2
2
≤ (ηn + 2R)

∥∥∥(β̂ − β)S∪{1}

∥∥∥
1
− (ηn − 2R)

∥∥∥(β̂ − β)SC\{1}

∥∥∥
1
.

By choosing ηn to be a large enough multiple of nλn, we have

∥∥∥X(β̂ − β)
∥∥∥2
2
≤ c3nλn

∥∥∥(β̂ − β)S∪{1}

∥∥∥
1
− c4nλn

∥∥∥(β̂ − β)SC\{1}

∥∥∥
1

(10)

for some positive constants c3, c4 with c3/c4 ≤ 2 < c2. Since ‖X(β̂ − β)‖2 is
always nonnegative, the inequality above implies

∥∥∥(β̂ − β)SC\{1}

∥∥∥
1
≤ c3

c4

∥∥∥(β̂ − β)S∪{1}

∥∥∥
1
. (11)
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Therefore under assumption 2, we have

∥∥∥(β̂ − β)S∪{1}

∥∥∥
2
≤ 1

c′
√
n

∥∥∥X(β̂ − β)
∥∥∥
2
.

Combine with (10) to deduce that

∥∥∥X(β̂ − β)
∥∥∥2
2
≤c3nλn

∥∥∥(β̂ − β)S∪{1}

∥∥∥
1

≤c3nλn

√
s∗ + 1

∥∥∥(β̂ − β)S∪{1}

∥∥∥
2

≤c3
c′

√
(s∗ + 1) log p

∥∥∥X(β̂ − β)
∥∥∥
2
.

Hence ∥∥∥X(β̂ − β)
∥∥∥
2
≤ c3

c′

√
(s∗ + 1) log p.

Again by assumption 2, we can go back to bound the l1 loss.

∥∥∥(β̂ − β)S∪{1}

∥∥∥
1
≤

√
s∗ + 1

∥∥∥(β̂ − β)S∪{1}

∥∥∥
2
≤ 1

c′

√
s∗ + 1

n

∥∥∥X(β̂ − β)
∥∥∥
2

≤ 2c3
(c′)2

s∗λn.

From (11) we have

∥∥∥β̂ − β
∥∥∥
1
≤ 2

(
1 +

c3
c4

)
c3

(c′)2
s∗λn.

That concludes the proof of (5). To show (8), observe that the penalty term
does not involve b1.

β̂1 =arg min
b1∈R

∥∥∥Y −X−1β̂−1 − b1X1

∥∥∥2
2

=β1 +
∑
i≥2

γi(βi − β̂i) +
XT

1 ε

‖X1‖2
. (12)

We only need to show the second term in (12) is of order op(1/
√
n). Bound the

absolute value of that term with

max
i≥2

|γi| ·
∥∥∥β̂S − βS

∥∥∥
1
≤ (c1λn) (C1s

∗λn) ,

by assumption 1 and the l1 control (5). That is then bounded by Op(s
∗λ2

n) =
op(1/

√
n) by assumption 3.

Remark 4. With some careful manipulation the REC(3s∗, c2) condition as in
assumption 2 can be reduced to REC(s∗, c2). The proof would require an extra

step establishing that |β̂1 − β1| is of order op(‖β̂S − βS‖1) +Op(1/
√
n).
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The ideas in the proofs for the two de-biasing estimators β̂
(ZZ)
1 and β̂1 are

similar. Ideally we want to run the regression

arg min
b1∈R

‖Y −X−1β−1 − b1X1‖2 . (13)

That gives a perfectly efficient and unbiased estimator. However β−1 is not
observed. It is natural to replace it with an estimator which is made globally
close to the truth β−1 using a penalized likelihood approach. As seen in the
proof of Theorem 3, most of the work goes into establishing global l1 control (5).
The de-biasing estimator is then obtained by running an ordinary least squares
regression like (13), replacing β−1 by some estimator satisfying (5), so that the
solution to the least squares optimization is close to the solution of (13) with
high probability.

2.2. Bayesian analogue of de-biasing estimators

In the Bayesian regime, recall that b is the p-dimensional random vector obeying
distribution μ under the prior and μY under the posterior. For the Bayesian
analogue to the de-biasing estimators, it is again essential to establish l1 control
on b−1 − β−1, the deviation of b−1 from the truth. Such posterior contraction
results were established by Castillo et al. [2] and Gao et al. [3], which already
provide the preliminary steps for our Bayesian procedure. The following lemma
in [3] serves as a Bayesian analogue of (5). It gives conditions under which the
sparse prior proposed by Gao et al. [3] enjoys the l1 minimax rate of posterior
contraction.

Lemma 1. (Corollary 5.4, [3]) Under the following prior distribution,

1. Let s have the probability mass function π(s) ∝ Γ(s)
Γ(s/2) exp(−2Ds log ep

s ).

2. Let S|s ∼ Unif(Zs := {S ⊂ {1, ..., p} : |S| = s,XS is full rank}).
3. Given the subset selection S, let the coefficients bS have density fS(bS) ∝

exp(−η‖XSbS‖),

if the design matrix X satisfies

κ0((2 + δ)s∗, X) = inf
‖b‖0≤(2+δ)s∗

√
s∗‖Xb‖2√
n‖b‖1

≥ c (14)

for some positive constant c, δ, then for each positive constant η there exist
constants c3 > 0 and large enough D > 0 for which

μY {‖b− β‖1 > c3s
∗λn} → 0 in Pβ probability,

where μY denotes the posterior distribution of b given Y .

Our bias corrected prior described in section 1 is obtained by slightly modify
the sparse prior of Gao et al. [3] to give good, asymptotically normal posterior



3090 D. Yang

behavior for a single coordinate. As discussed in the last section, classical ap-
proaches to de-biasing exploit the idea of penalizing all coordinates except the
one of interest. The idea behind the construction of our bias corrected prior is
to essentially put the sparse prior only on b−1.

Recall that H is the matrix projecting R
n to span(X1). Under the model

where Y ∼ N (Xb, In), the likelihood function has the factorization

Ln(b) =
1√

n(2π)n/2
exp

(
−‖Y −Xb‖22

2

)

=
1√

n(2π)n/2
exp

(
−‖HY −HXb‖22

2

)

× exp

(
−‖(I −H)Y − (I −H)Xb‖22

2

)
.

Write W = (I−H)X−1 and reparametrize b∗1 = b1+
∑

i≥2 γibi with γi as defined
in assumption 1. The likelihood Ln(b) can be rewritten as a constant multiple
of

exp

(
−‖HY − b∗1X1‖22

2

)
exp

(
−‖(I −H)Y −Wb−1‖22

2

)
.

The likelihood factorizes into a function of b∗1 and b−1. Therefore if we make b∗1
and b−1 independent under the prior, they will be independent under the pos-
terior. In the prior construction we made b1|b−1 ∼ N (−

∑
i≥2 γibi, σ

2
n). Hence

b∗1 ∼ N (0, σ2
n) and b∗1 is independent of b−1. Note that under the prior distribu-

tion b1 and b−1 are not necessarily independent.

The sparse prior put on b−1 is analogue to that of Gao et al. [3, section 3],
using W as the design matrix in the prior construction. By lemma 1, b−1 is close
to β−1 in l1 norm with high posterior probability as long as κo((2 + δ)s∗,W ) is
bounded away from 0.

We main result (Theorem 2) states that the prior distribution we propose
has the effect of correcting for the bias, in a fashion analogous to that of the

two-step procedure β̂
(ZZ)
1 . Let us first give an outline of the proof. The joint

posterior distribution of b∗1 and b−1 factorizes into two marginals. In the X1

direction, the posterior distribution of b∗1 is asymptotically Gaussian centered

around
XT

1 Y

‖X1‖2
2
= β∗

1 +
XT

1 ε

‖X1‖2
2
. After we reverse the reparametrization we want

the posterior distribution of b1 to be asymptotically Gaussian centered around

an efficient estimator β̂1 = β1 +
XT

1 ε

‖X1‖2
2
+ op(1/

√
n). Therefore we need to show

b∗1 − b1 is very close to β∗
1 − β1. That can be obtained from the l1 control on

b−1 − β−1 under the posterior. In the next section we will give the proof of
Theorem 2 in detail.
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3. Proof of Theorem 2

Since the prior and the likelihood of b∗1 are both Gaussian, the posterior distri-
bution is also Gaussian:

b∗1|Y ∼ N
(

σ2
n

1 + ‖X1‖22σ2
n

XT
1 Y,

σ2
n

1 + ‖X1‖22σ2
n

)
.

Independence of b∗1 and b−1 under the posterior gives that the above is also the

distribution of b∗1 given Y and b−1. Take β̂1 to be any estimator with expan-

sion (2). The distribution of ‖X1‖2(b1 − β̂1) given Y and b−1 is

N

⎛
⎝‖X1‖2

⎛
⎝ σ2

n

1 + ‖X1‖22σ2
n

XT
1 Y −

∑
i≥2

γibi − β̂1

⎞
⎠ ,

σ2
n‖X1‖22

1 + ‖X1‖22σ2
n

⎞
⎠ . (15)

Note that without conditioning on b−1, the posterior distribution of b1 is not
necessarily Gaussian.

The main part of the proof of Theorem 2 is to show that the bounded-
Lipschitz metric between the posterior distribution of b1 and N (β̂1, 1/‖X1‖22)
goes to 0 under the truth. From Jensen’s inequality and the definition of the
bounded-Lipschitz norm we have∥∥∥L(‖X1‖2(b1 − β̂1)|Y )−N (0, 1)

∥∥∥
BL

≤μ
b−1

Y

∥∥∥L(‖X1‖2(b1 − β̂1)|Y, b−1)−N (0, 1)
∥∥∥
BL

.

Here μ
b−1

Y stands for the expected value operator under the posterior distribution
of b given Y . The superscript is a reminder that the operator integrates over
the randomness of b−1.

For simplicity denote the posterior mean and variance in (15) as νn and τ2n
respectively. The bounded-Lipschitz distance between two normals N (μ1, σ

2
1)

and N (μ2, σ
2
2) is bounded by (|μ1 − μ2| + |σ1 − σ2|) ∧ 2. Hence the above is

bounded by

μ
b−1

Y (|νn| ∧ 2) + μ
b−1

Y ((|τn − 1|) ∧ 2) .

Therefore to obtain the desired convergence in (4), we only need to show

Pβμ
b−1

Y (|νn| ∧ 2) → 0, and (16)

Pβμ
b−1

Y ((|τn − 1|) ∧ 2) → 0. (17)

To show (16), notice that the integrand is bounded. Hence it is equivalent to
show convergence in probability. Write

|νn| =
σ2
n‖X1‖32

1 + σ2
n‖X1‖22

⎛
⎝β1 +

XT
1 ε

‖X1‖22
+

∑
i≥2

γiβi

⎞
⎠
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− ‖X1‖2
∑
i≥2

γibi − ‖X1‖2
(
β1 +

XT
1 ε

‖X1‖22
+ op

(
1√
n

))

≤ ‖X1‖2
1 + σ2

n‖X1‖22

∣∣∣∣∣∣β1 +
XT

1 ε

‖X1‖2
+

∑
i≥2

γiβi

∣∣∣∣∣∣+
∑
i≥2

γi(βi − bi) + op(1). (18)

The first term is no longer random in b, and it can be made as small as we wish
now that it is decreasing in σn. If we set σ2

n � ‖β‖1λn/‖X1‖2, this term is of
order op(1).

For the second term, we will apply lemma 1 to deduce that this term also

goes to 0 in Pβμ
b−1

Y probability. To apply the posterior contraction result we
need to establish the compatibility assumption (14) on W .

Lemma 2. Under assumption 1, 2, 3, the matrix W = (I −H)X−1 satisfies

κ0((2 + δ)s∗,W ) = inf
‖b‖0≤(2+δ)s∗

√
s∗‖Wb‖2√
n‖b‖1

≥ c

for some c, δ > 0.

We will prove the lemma after the proof of Theorem 2.
To show (17), note that the integrand is not a random quantity. It suffices to

show

|τn − 1| =
∣∣∣∣ σ2

n‖X1‖2
1 + σ2

n‖X1‖22
− 1

‖X1‖2

∣∣∣∣ → 0.

That is certainly true for a {σn} sequence chosen large enough. Combine (16),
(17) and the bound on the bounded Lipschitz distance, we have shown

Pβ

∥∥∥L(
‖X1‖2(b1 − β̂1)|Y

)
−N (0, 1)

∥∥∥
BL

→ 0.

Proof of lemma 2. We will justify the compatibility assumption on W in two
steps. First we will show that the compatibility assumption of the X matrix
follows from the REC assumption 2. Then we will show that the compatibility
constant of X and W are not very far apart.

Let us first show that under assumption 2, there exist constants 0 < δ < 1
and c > 0, for which

κ0((2 + δ)s∗, X) = inf
‖b‖0≤(2+δ)s∗

√
s∗‖Xb‖2√
n‖b‖1

≥ c.

Denote the support of g as S. We have

κ0((2 + δ)s∗, X) ≥ inf
‖b‖0≤(2+δ)s∗

1√
2 + δ

‖Xb‖2√
n‖bS‖2

≥ min
J⊂[p],
|J|≤3s∗

inf
b �=0,

‖bJC‖
1
≤c2‖bJ‖1

‖Xb‖2√
n‖bJ‖2
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=κ(3s∗, c2) > 0.

Now, under assumptions 1, 2 and 3, we will show that there exist constants
0 < δ′ < 1 and c′ > 0, for which

κ0((2 + δ′)s∗,W ) ≥ κ0((2 + δ)s∗, X) + o(1).

For g ∈ [R]p−1, we have

‖Wg‖2 =

∥∥∥∥∥∥X
[
0
g

]
−

∑
i≥2

γigi

∥∥∥∥∥∥
2

≥
∥∥∥∥X

[
0
g

]∥∥∥∥
2

− λn‖g1‖2

by assumption 1. Deduce that

κ0((2 + δ′)s∗,W ) = inf
|b|0≤(2+δ)s∗

√
s∗‖Wb‖2√
n‖b‖1

≥κ0((2 + δ′)s∗ + 1, X)−
√

s∗

n
λn

=κ0((2 + δ′)s∗ + 1, X)−
√
s∗ log p

n
.

The second term is of order o(1) under assumption 3.
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