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Estimating the Coefficients of a Mixture
of Two Linear Regressions by

Expectation Maximization
Jason M. Klusowski , Student Member, IEEE, Dana Yang, and W. D. Brinda

Abstract— We give convergence guarantees for estimating the
coefficients of a symmetric mixture of two linear regressions by
expectation maximization (EM). In particular, we show that the
empirical EM iterates converge to the target parameter vector
at the parametric rate, provided the algorithm is initialized in
an unbounded cone. In particular, if the initial guess has a
sufficiently large cosine angle with the target parameter vector,
a sample-splitting version of the EM algorithm converges to
the true coefficient vector with high probability. Interestingly,
our analysis borrows from tools used in the problem of esti-
mating the centers of a symmetric mixture of two Gaussians
by EM. We also show that the population of EM operator
for mixtures of two regressions is anti-contractive from the
target parameter vector if the cosine angle between the input
vector and the target parameter vector is too small, thereby
establishing the necessity of our conic condition. Finally, we give
empirical evidence supporting this theoretical observation, which
suggests that the sample-based EM algorithm may not con-
verge to the target vector when initial guesses are drawn
accordingly. Our simulation study also suggests that the EM
algorithm performs well even under model misspecification
(i.e., when the covariate and error distributions violate the model
assumptions).

Index Terms— Mixture models, expectation-maximization algo-
rithm, iterative algorithms, clustering algorithms, regression
analysis.

I. INTRODUCTION

M IXTURES of linear regressions are useful for mod-
eling different linear relationships between input and

response variables across several unobserved heterogeneous
groups in a population. First proposed in [1] as a generalization
of “switching regressions”, this model has found broad appli-
cations in areas such as plant science [2], musical perception
theory [3], [4], and educational policy [5].

In this paper, we consider estimating the model parameters
in a symmetric two component mixture of linear regressions.
Towards a theoretical understanding of this model, suppose
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we observe data Dn = {(Xi ,Yi )}ni=1, where

Yi = Ri �θ∗, Xi � + εi , (1)

Xi
i.i.d .∼ N(0, Id ), εi

i.i.d .∼ N(0, σ 2), Ri
i.i.d .∼ Rademacher(1/2),

and {Xi }, {εi }, and {Ri } are independent of each other. In other
words, each predictor variable is Gaussian, and the response
is centered at either the θ∗ or −θ∗ linear combination of
the predictor. The two classes are equally probable, and the
label of each observation is unknown. We seek to estimate θ∗
(or −θ∗, which produces the same model distribution).

The likelihood function of the model, L(θ;Dn), can be
expressed as

n∏

i=1

[
1

2
τ(Xi )τσ (Yi − �θ, Xi �)+ 1

2
τ(Xi )τσ (Yi + �θ, Xi �)

]
,

where τ(x) = 1
(2π)d/2

e−�x�2/2 and τσ (y) = 1√
2πσ

e−y2/(2σ 2),
is a multi-dimensional, multi-modal (it has many spurious
local maxima), and nonconvex objective function, and hence
direct maximization (e.g., grid search) is intractable. Even
the population likelihood (in the infinite data setting) has
global maxima at −θ∗ and θ∗, and a local minimum at the
zero vector. Given these computational concerns, other less
expensive methods have been used to estimate the model
coefficients. For example, mixtures of linear regressions can
be interpreted as a particular instance of subspace clustering,
since each regressor / regressand pair (X,Y ) ∈ R

d+1 lies in the
d-dimensional subspace determined by their model parameter
vectors (θ∗ and −θ∗). When the covariates and errors are
Gaussian, algebro-geometric and probabilistic interpretations
of PCA [6], [7] motivate related clustering schemes, since
there is an inherent geometric aspect to such mixture models.

Another competitor is the Expectation-Maximization (EM)
algorithm, which has been shown to have desirable empir-
ical performance in various simulation studies [3], [4], [8].
Introduced in a seminal paper of Dempster et al. [9], the EM
algorithm is a widely used technique for parameter estima-
tion, with common applications in latent variable models
(e.g., mixture models) and incomplete-data problems (e.g., cor-
rupted or missing data) [10]. It is an iterative procedure that
monotonically increases the likelihood [9, Th. 1]. When the
likelihood is not concave, it is well known that EM can
converge to a non-global optimum [11, p. 97]. However, recent
work has side-stepped the question of whether EM reaches
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the likelihood maximizer, instead by directly working out
statistical guarantees on its loss. For certain well-specified
models, these explorations have identified regions of local
contractivity of the EM operator near the true parameter so
that, when initialized properly, the EM iterates approach the
true parameter with high probability.

This line of research was spurred by [12], which established
general conditions for which a ball centered at the true
parameter would be a basin of attraction for the population
version of the EM operator. For a large enough sample size,
the difference (in that ball) between the sample EM operator
and the population EM operator can be bounded such that
the EM estimate approaches the true parameter with high
probability. That bound is the sum of two terms with distinct
interpretations. There is an algorithmic convergence term
γ t�θ0 − θ∗� for initial guess θ0, truth θ∗, and some modulus
of contraction γ ∈ (0, 1); this comes from the analysis of the
population EM operator. The second term captures statistical
convergence and is proportional to the supremum norm of
supθ �M(θ)− Mn(θ)�, the difference between the population
and sample EM operators, M and Mn , respectively. This result
is also shown for a “sample-splitting” version of EM, where
the sample is partitioned into batches and each batch governs
a single step of the algorithm.

Our purpose here is to follow up on the analysis of [12]
by proving a larger basin of attraction for the mixture of two
linear models and by establishing an exact probabilistic bound
on the error of the sample-splitting EM estimate when the
initial guess falls in the specified region. In particular, we show
that

(a) The EM algorithm converges to the target parameter
vector when it is initialized in a cone (defined in terms
of the cosine similarity between the initial guess θ0 and
the target model parameter θ∗).

(b) The EM algorithm can fail to converge to θ∗ if the cosine
similarity is too small.

In related works, typically some variant of the mean value
theorem is employed to establish contractivity toward the true
parameter and the rate of geometric decay is then determined
by relying heavily on the fact that initial guess belongs to
a bounded set and is not too far from the target parameter
vector (i.e., a ball centered at the target parameter vector).
Our technique relies on Stein’s Lemma, which allows us to
reduce the problem to the two-dimensional case and exploit
certain monotonicity properties of the population EM operator.
Such methods allow one to be very careful and explicit in
the analysis and more cleanly reveal the role of the initial
conditions. These results cannot be deduced from preexisting
works (such as [12]), even by sharpening their analysis. Our
improvements are not solely in terms of constants. Indeed,
we will show that as long as the cosine angle between the
initial guess and the target parameter vector (i.e., their degree
of alignment) is sufficiently large, the EM algorithm converges
to the target parameter vector θ∗. In particular, the norm of
the initial guess can be arbitrarily large, provided the cosine
angle condition is met.

In the machine learning community, mixtures of lin-
ear regressions are known as Hierarchical Mixture of

Experts (HME) and, there, the EM algorithm has also been
employed [13]. The mixtures of linear regressions prob-
lem has also drawn recent attention from other scholars
(e.g., [14]–[20]), although none of them have attempted to
sharpen the EM algorithm in the sense that many works
still require initialization is a small ball around the target
parameter vector. For example, the general case with multiple
components was considered in [18], but initialization is still
required to be in a ball around each of the true component
coefficient vectors.

This paper is organized as follows. In Section II, we explain
the model and explain how the population EM operator is
contractive toward the true parameter on a cone in R

d . We
also show that the operator is not contractive toward the true
parameter on certain regions of R

d . We connect our problem to
phase retrieval in Section III and borrow preexisting techniques
to find a good initial guess in Section IV. Section V looks at
the behavior of the sample-splitting EM operator in this cone
and states our main result in the form of a high-probability
bound. Section VI and Section VII are devoted to proving the
contractivity of the population EM operator toward the target
vector over a cone and proving our main result, respectively.
A discussion of our findings, including evidence of the failure
of the EM algorithm for poor initial guesses from a simulated
experiment, is provided in Section VIII. A simulation study
of the EM algorithm under model misspecification is also
given therein. Finally, more technical proofs are relegated
to Appendix.

II. THE EMPIRICAL AND POPULATION EM OPERATOR

The EM operator for estimating θ∗ (see [12, p. 6] for a
derivation) is

Mn(θ) =
(

1

n

n∑

i=1

Xi X	i

)−1

×
[

1

n

n∑

i=1

(2φ(Yi �θ, Xi �/σ 2)− 1)Xi Yi

]
, (2)

where φ(z) = 1
1+e−2z is a horizontally stretched logistic

sigmoid. Here
( 1

n

∑n
i=1 Xi X	i

)−1
is the inverse of the Gram

matrix 1
n

∑n
i=1 Xi X	i . In the limit with infinite data, the pop-

ulation EM operator replaces sample averages with expecta-
tions, and thus

M(θ) = 2E

[
φ(Y �θ, X�/σ 2)XY

]
. (3)

As we mentioned in the introduction, [12] showed that if
the EM operator (2) is initialized in a ball around θ∗ with
radius proportional θ∗, then the EM algorithm converges to
θ∗ with high probability. It is natural to ask whether this good
region of initialization can be expanded, possibly allowing
for initial guesses with unbounded norm. The purpose of this
paper is to relax the aforementioned ball condition of [12]
and show that if the cosine angle between θ∗ and the initial
guess is not too small, the EM algorithm also converges.
We also simplify the analysis considerably and use only
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Fig. 1. The population EM operator M(θ) lies in the space spanned by θ
and θ∗. The unit vector θ⊥0 lies in the space spanned by θ and θ∗ and is
perpendicular to θ . The vector θ forms an angle α with θ∗.

elementary facts about multivariate Gaussian distributions. Our
improvement is manifested in the set containment

{θ : �θ − θ∗� ≤
√

1− ρ2�θ∗�} ⊆ {θ : �θ, θ∗� ≥ ρ�θ��θ∗�},
for ρ ∈ [−1, 1], since for all θ in the set on the left side,

�θ, θ∗� = 1

2

(
�θ�2 + �θ∗�2 − �θ − θ∗�2

)

≥ 1

2

(
�θ�2 + ρ2�θ∗�2

)

= ρ�θ��θ�� + 1

2
(ρ�θ∗� − �θ�)2

≥ ρ�θ��θ��. (4)

The conditions in [12, Corollary 5] require the initial guess
θ0 to be at most �θ��/32 away from θ�, which corresponds
to �θ� ≤ (1 + √

1− ρ2)�θ∗� and ρ = √
1− (1/32)2 ≈

0.999, whereas our condition allows for the norm of θ to be
unbounded and ρ > 0.85.

Let θ0 be the unit vector in the direction of θ and let θ⊥0
be the unit vector that belongs to the hyperplane spanned
by {θ∗, θ} and orthogonal to θ (i.e., θ⊥0 ∈ span{θ, θ∗} and
�θ, θ⊥0 � = 0). Let θ⊥ = �θ�θ⊥0 . We will later show in
Section VI that M(θ) belongs to span{θ, θ�}, as illustrated
in Fig. 1. Denote the angle between θ∗ and θ0 as α, with
�θ∗� cosα = �θ0, θ

∗� and ρ = cosα. As we will see from the
following results, as long as cosα is not too small, M(θ) is
a contracting operation that is always closer to the truth θ∗
than θ . The next lemma allows us to derive a region of R

d

on which M is contractive toward θ∗. We defer its proof until
Section VI.

Lemma 1: For any θ in R
d with �θ, θ∗� > 0,

�M(θ) − θ∗� ≤ γ �θ − θ∗�, (5)

where

γ = √κ
√

1+ 4

( |�θ⊥, θ∗�| + σ 2

�θ, θ∗�
)2

, (6)

and

κ2 = max

{
1− |�θ0, θ

��|2
σ 2 + �θ∗�2 , 1− �θ, θ∗�

σ 2 + �θ, θ∗�
}
< 1. (7)

If we define the input signal-to-noise ratio as η� = �θ�/σ
and model signal-to-noise ratio (SNR) as η = �θ��/σ and
use the fact that �θ�� cosα = �θ0, θ

∗�, then the contractivity
constant (6) can be rewritten as

max

{(
1− η

2 cos2 α

1+ η2

)1/4

,

(
1− η�η cosα

1+ η�η cosα

)1/4
}

×
√

1+ 4

(
tan α + 1

η�η cosα

)2

. (8)

Remark 1: If η� ≥ 20, η ≥ 40, and cosα ≥ 0.85, then
κ is bounded by a universal constant less than 1/2 and γ
is bounded by a universal constant less than 1, implying the
population EM operator θ t ← M(θ t−1) converges to the truth
θ∗ exponentially fast.

III. RELATIONSHIP TO PHASE RETRIEVAL

The problem of estimating the true parameter vector in
a mixture of two linear regressions is related to the phase
retrieval problem, where one has access to magnitude-only
data according to the model

Ỹ = |�θ∗, X�|2 + ε. (9)

In the no noise case, i.e., ε ≡ 0, one can obtain the
phase retrieval model from the symmetric two component
mixture of linear regressions by squaring each response vari-

able Yi from (1) and visa versa by setting Yi = Ri

√
Y �i ,

where Ri
i.i.d .∼ Rademacher(1/2) is independent of the data

{(Xi , Ỹi )}ni=1. Here the sample subsets giving rise to the model
parameters θ∗ and −θ∗ are {i : Ri sgn(�θ∗, Xi �) = 1} and
{i : Ri sgn(�θ∗, Xi �) = −1}, respectively. Even in the case
of noise, squaring each response variable and subtracting the
variance σ 2 of the error distribution yields

Y �i = Y 2
i − σ 2 = |�θ∗, Xi �|2 + 2Riεi�θ∗, Xi � + (ε2

i − σ 2)

= |�θ∗, Xi �|2 + ξ(Xi , Ri , εi ), (10)

where ξ(Xi , Ri , εi ) is a mean zero random variable with
variance 4σ 2�θ∗�2+2σ 4. This is essentially the phase retrieval
model (9) with heteroskedastic errors. See also [15, Sec. 3.5]
for a similar reduction to the “Noisy Phase Model”, where the
measurement error is pre-added to the inner product and then
squared, viz., |�θ∗, X� + ε|2.

Recent algorithms used to recover θ∗ from (X, Ỹ ) include
PhaseLift [21], PhaseMax [22], [23], PhaseLamp [24], [25]
and Wirtinger flow [26], [27], to name a few. PhaseLift
operates by solving a semi-definite relaxation of the nonconvex
formulation of the phase retrieval problem. PhaseMax and
PhaseLamp solve a linear program over a polytope via convex
programming. Finally, Wirtinger flow is an iterative gradient-
based method that requires proper initialization. Parallel to our
work, [24], [25] reveal that exact recovery (when n, d → +∞)
in PhaseMax is governed by a critical threshold [24, Th. 3],
which is measured in terms of the cosine angle between the
initial guess and the target parameter vector. Analogous to
our Lemma 2 (which is asymptotic in the sense that n →
+∞), they prove that recovery can fail is this cosine angle



3518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

is too small. PhaseLamp is an iterative variant of PhaseMax
that allows for a smaller cosine angle criterion than the critical
threshold from PhaseMax. Our setting is slightly more general
than [24], [25] in that we allow for measurement error and our
bounds are non-asymptotic in n and d .

IV. INITIALIZATION

Theorem 1 below requires the initial guess to have a good
inner product with θ∗. But how should one initialize in
practice? There is considerable literature showing the efficacy
of initialization based on spectral [16]–[18] or Bayesian [4]
methods. For example, inspired by the link (10) between
phase retrieval and our problem, we can use the same spectral
initialization method of [27] for the Wirtinger flow iterates
(c.f., [16] for a similar strategy). That is, set

λ2 = d

∑n
i=1 Y �i∑n

i=1 �Xi�2 , (11)

and take θ0 equal to be the eigenvector corresponding to the
largest eigenvalue of

1

n

n∑

i=1

Y �i Xi X	i , (12)

scaled so that �θ0� = λ. According to [27, Th. 3.3], we are
guaranteed that with high probability �θ0 − θ∗� ≤ 1

8�θ∗�,
and hence by (4), �θ0, θ∗� ≥ √

1− (1/8)2�θ0��θ∗� ≈
0.992�θ0��θ∗� and �θ0� ≥ (7/8)�θ∗�. Provided that �θ∗� ≥
(8/7)20σ , we will see in Theorem 1 that this θ0 satisfies our
criteria for a good initial guess. Although the joint distributions
of (X, Ỹ ) and (X,Y �) are not exactly the same, for large
n, 1

n

∑n
i=1 ξ(Xi , Ri , εi ) ≈ 0, and hence (11) and (12) are

approximately equal to the same quantity with Y �i replaced
by Ỹi .

The next lemma, proved in Appendix, shows that the
initialization conditions in Remark 1 are essentially necessary
in the sense that contractivity of M toward θ∗ can fail for
certain initial guesses that do not meet our cosine angle
criterion. In contrast, it is known [28], [29] that the population
EM operator for a symmetric mixture of two Gaussians Y ∼
1
2 N(θ∗, σ 2 Id )+ 1

2 N(−θ∗, σ 2 Id ) is contractive toward θ∗ on
the entire half-plane defined by �θ, θ∗� > 0.1 The disparity
between the EM operators for the two models is revealed in
the proof of the contractivity of M toward θ∗ (see Section VI).
Indeed, we will see in Remark 2 that the population EM
operator for mixtures of regressions is essentially a “stretched”
version of the population EM operator for Gaussian mixtures.

Lemma 2: There is a subset of R
d with positive Lebesgue

measure, each of whose members θ satisfies �θ, θ∗� > 0 and

�M(θ)− θ∗� > �θ − θ∗�.
While this result does not generally imply that the empirical

iterates θ t ← Mn(θ
t−1) will fail to converge to θ∗ for

1Note that this is the best one can hope for: if �θ, θ∗� < 0 (reps.
�θ, θ∗� = 0), then the population EM operator is contractive toward −θ∗ (resp.
the zero vector). Thus, unless �θ, θ∗� = 0 (i.e., θ belongs to the hyperplane
perpendicular to θ∗), the population EM is contractive towards either model
parameter −θ∗ or θ∗.

�θ0, θ∗� > 0, it does suggest that difficulties may arise in this
regime. Indeed, the discussion in Section VIII gives empirical
evidence for this theoretical observation.

V. MAIN THEOREM

As in [12], we analyze a sample-splitting version of the
EM algorithm, where for an allocation of n samples and T
iterations, we divide the data into T subsets of size �n/T �.
We then perform the updates θ t ← Mn/T (θ

t−1), using a new
subset of samples to compute Mn/T (θ) at each iteration. The
advantage of sample-splitting is purely for ease of analysis.
In particular, conditional on the portion of data used to
construct Mn/T at iteration t , the distribution of θ t depends
only on the other portion of the data through θ t−1. For the
next theorem, let η0 = �θ0�/σ denote the initial SNR and
η = �θ∗�/σ denote the model SNR.

Theorem 1: Let �θ0, θ∗� > ρ�θ0��θ∗� for ρ > 0.85,
η0 ≥ 20, and η ≥ 40. Fix δ ∈ (0, 1). Suppose furthermore that
n ≥ max{cd log(T/δ), c�} for some positive universal constant
c and positive constant c� = c�(ρ, σ, �θ∗�, �θ0�). Then there
exists a universal modulus of contraction γ ∈ (0, 1) and a
positive universal constant C such that the sample-splitting
empirical EM iterates (θ t )Tt=1 based on n/T samples per step
satisfy

�θ t − θ∗� ≤ γ t�θ0 − θ∗� + C
√
σ 2 + �θ∗�2
1− γ

√
dT log(T/δ)

n
,

with probability at least 1− δ.
Note that T governs the number of iterations of the EM

operator; if it is too small, the term γ t�θ0 − θ∗� from
Theorem 1 may fail to reach the parametric rate. Hence, T
must scale like log(n/d)

log(1/γ ) .

We will prove Theorem 1 in Section VII. The main
aspect of the analysis lies in showing that Mn satisfies
an invariance property, i.e., Mn(A) ⊆ A, where A is a
set on which M is contractive toward θ∗. The algorithmic
error γ t�θ0 − θ∗� is a result of repeated evaluation of the
population EM operator θ t ← M(θ t−1) and the contractiv-
ity of M towards θ∗ from Lemma 1. The stochastic error
C
√
σ 2+�θ∗�2
1−γ

√
dT log(T/δ)

n is obtained from a high-probability
bound on maxt∈[T ] �Mn/T (θ

t ) − M(θ t )�, which is contained
in the proof of [12, Corollary 5]).

VI. PROOF OF LEMMA 1

If W = �θ∗, X� + ε, a few applications of Stein’s
Lemma [30, Lemma 1] yields

M(θ) = E

[
(2φ(W �θ, X�/σ 2)− 1)XW

]

= θ∗
[
2φ(W �θ, X�/σ 2)+ 2(W �θ, X�/σ 2)

×φ�(W �θ, X�/σ 2)− 1
]

+ θE
[
2(W 2/σ 2)φ�(W �θ, X�/σ 2)

]
. (13)

Letting

A =
[
2φ(W �θ, X�/σ 2)+ 2(W �θ, X�/σ 2)

×φ�(W �θ, X�/σ 2)− 1
]
, (14)
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and

B = E

[
2(W 2/σ 2)φ�(W �θ, X�/σ 2)

]
, (15)

we see that M(θ) = θ∗A + θB belongs to span{θ, θ∗} =
{λ1θ + λ2θ

∗, : λ1, λ2 ∈ R}. This is a crucial fact that we will
exploit multiple times.

Observe that for any a in span{θ, θ∗},
a = �θ0, a �θ0 + �θ⊥0 , a �θ⊥0 ,

and

�a�2 = |�θ0, a �|2 + |�θ⊥0 , a �|2.
Specializing this to a = M(θ)− θ∗ yields

�M(θ) − θ∗�2 = |�θ0,M(θ)− θ∗�|2 + |�θ⊥0 ,M(θ)− θ∗�|2.
The strategy for establishing contractivity of M(θ) toward
θ∗ will be to show that the sum of |�θ0,M(θ) − θ∗�|2 and
|�θ⊥0 ,M(θ)−θ∗�|2 is less than γ 2�θ−θ∗�2. This idea was used
in [28] to obtain contractivity of the population EM operator
for a mixture of two Gaussians. Due to the similarity of the
two problems, it turns out that many of the same ideas transfer
to our (more complicated) setting.

To reduce this (d+1)-dimensional problem (X,Y ) ∈ R
d+1

to a 2-dimensional problem (Z1, Z2) ∈ R
2, we first show that

W �θ, X�/σ 2 D= �Z1|Z2| + �Z2
2,

where Z1, Z2
i.i.d .∼ N(0, 1). The coefficients � and � are

� = �θ, θ∗�/σ 2

and

�2 = (�θ�2/σ 4)(σ 2 + �θ∗�2)− �2

= (�θ�2/σ 4)(σ 2 + |�θ⊥0 , θ∗�|2).
This is because of the distributional equality

(W, �θ, X�/σ 2)
D=

(
√
σ 2 + �θ∗�2 Z2,

�√
σ 2 + �θ∗�2 Z1

+ �√
σ 2 + �θ∗�2 Z2

)
. (16)

Note further that �Z1 Z2 + �Z2
2

D= �Z1|Z2| + �Z2
2 because

they have the same moment generating function. Using this,
we deduce that

W �θ, X�/σ 2 D= �Z1|Z2| + �Z2
2 . (17)

Lemma 7 implies that

(1− κ)�θ⊥0 , θ∗� ≤ �θ⊥0 ,M(θ)� ≤ (1+√κ)�θ⊥0 , θ∗�,
and consequently,

|�θ⊥0 ,M(θ)−θ∗�| ≤ √κ |�θ⊥0 , θ−θ∗�| ≤
√
κ�θ−θ∗�. (18)

Next, we note that

σ 4|�2 − �| = |�θ�2(σ 2 + |�θ⊥0 , θ∗�|2)− σ 2�θ, θ∗�|
≤ �θ�2|�θ⊥0 , θ∗�|2 + σ 2|�θ, θ − θ∗�|
≤ �θ�(|�θ⊥, θ∗�| + σ 2)�θ − θ∗�.

Finally, define

h(α, β)=E [(2φ(α|Z2|(Z1+β|Z2|))−1)(|Z2|(Z1+β|Z2|))] .
Note that by definition of h, h(�, ��) = �θ,M(θ)�

� . In fact,
h is the one-dimensional population EM operator for this
model when θ∗ = β and σ 2 = 1. By the self-consistency
property of EM [31, p. 79], h(β, β) = β. Translating this
to our problem, we have that h( ��,

�
�) = �

� = �θ,θ∗�
σ 2�

.

Since h(�, ��)− h( ��,
�
�) =

∫ �
�
�

∂h
∂αh(α, ��)dα, we have from

Lemma 8,

|�θ0,M(θ)− θ∗�| ≤ σ 2�

�θ�

∣∣∣∣∣

∫ �

�
�

∂

∂α
h

(
α,
�

�

)
dα

∣∣∣∣∣

≤ 2
√
κσ 2�

�θ�

∣∣∣∣∣

∫ �

�
�

dα

α2

∣∣∣∣∣

= 2σ 2√κ |�2 − �|
��θ�

≤ 2
√
κ

( |�θ⊥, θ∗�| + σ 2

�θ, θ∗�
)
�θ − θ∗�.

Combining this with inequality (18) yields (5). This com-
pletes the proof of Lemma 1.

Remark 2: The function h is related to the EM operator
for the one-dimensional symmetric mixture of two Gaussians
model Y ∼ 1

2 N(−β, 1) + 1
2 N(β, 1). One can derive that

(see [32, p. 11]) the population EM operator is

g(α, β) = E [(2φ(α(Z1 + β))− 1)(Z1 + β)] .
Then h(α, β) is a “stretched” version of g(α, β) as seen
through the identity

h(α, β) = E [|Z2|g(α|Z2|, β|Z2|)] .
In light of this relationship, it is perhaps not surprising that

the EM operator for the mixture of linear regressions problem
also enjoys a large basin of attraction.

On the other hand, from [32, p. 11], the population EM
operator M̃ for the symmetric two component mixture of
Gaussians Y ∼ 1

2 N(θ∗, σ 2 Id )+ 1
2 N(−θ∗, σ 2 Id ), is equal to

M̃(θ) = 2E

[
Yφ(�Y, θ�/σ 2)

]
= θ∗ Ã + θ B̃,

where Ã = E
[
2φ(�θ, θ∗�/σ 2 + �θ�Z1/σ)− 1

]
and B̃ =

2E
[
φ�(�θ, θ∗�/σ 2 + �θ�Z1/σ)

]
.

Compare the values of Ã and B̃ with A and B from
(14) and (15). We see that M is essentially a “stretched”
and “scaled” version of M̃ by the random dilation factors

|Z2|
√

1+ |�θ⊥0 , θ∗�|2/σ 2 and |Z2|
√

1+ �θ∗�2/σ 2. As will be
seen in the proof Lemma 2 in Appendix, this additional source
of variability causes the repellant behavior of M in Lemma 2.

Remark 3: Recently in [33], the authors analyzed gradient
descent for a single-hidden layer convolutional neural network
structure with no overlap and Gaussian input. In this setup,
we observe i.i.d. data {(Xi ,Yi )}ni=1, where Yi = f (Xi , w)+εi

and Xi ∼ N(0, Id ) and εi ∼ N(0, σ 2) are independent
of each other. The neural network has the form f (x, w) =
1
k

∑k
j=1 max{0, �w j , x�} and the only nonzero coordinates of
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w j are in the j
th

successive block of d/k coordinates and are
equal to a fixed d/k dimensional filter vector w. One desires
to minimize the risk �(w) = E

[
( f (X, w)− f (X, w�))2

]
.

Interestingly, the gradient of �(w) belongs to the linear span
of ω and ω�, akin to our M(θ) ∈ span{θ, θ∗} (and also in the
Gaussian mixture problem [32]). This property also plays a
critical role in their analysis.

VII. PROOF OF THEOREM 1

The first step of the proof is to show that the empirical EM
operator satisfies Mn(A) ⊂ A, where A is a set on which
M is contractive toward θ∗. In other words, the empirical
EM iterates remain in a set where M(θ) is closer to θ∗ than
its input θ . To this end, define the set A = {θ : �θ, θ∗� >
ρ�θ��θ∗�, �θ� ≥ 20σ }. By Remark 1, the stated conditions
on ρ, �θ�, and �θ∗� ensure that M is contractive toward θ∗
on A and that κ < 1/2.

Next, we use Lemma 3 which shows that

M(A) ⊆ B � {θ : �θ, θ∗� > (1+�)ρ�θ��θ∗�,
�θ∗�(1− κ) ≤ �θ� ≤

√
σ 2 + 3�θ∗�2}.

The fact that B ⊂ A allows us to claim that when n is large
enough, Mn(A) ⊂ M(B), and hence Mn(A) ⊆ M(A) ⊆ A.
To show this, assume supθ∈A �Mn(θ) − M(θ)� < �. That
implies

sup
θ∈A

∥∥∥∥
Mn(θ)

�Mn(θ)� −
M(θ)

�M(θ)�
∥∥∥∥ ≤ 2 sup

θ∈A
�Mn(θ)− M(θ)�
�M(θ)�

<
2�

(1− κ)�θ∗� . (19)

For the last inequality, we used the fact that �M(θ)� ≥
�θ∗�A ≥ �θ∗�(1 − κ) for all θ in A, which follows from
(13) and Lemma 7. By (19) and Lemma 3 (A.3), we have that

sup
θ∈A

〈
θ∗, Mn(θ)

�Mn(θ)�
〉
≥ sup

θ∈A

〈
θ∗, M(θ)

�M(θ)�
〉
− 2�

(1− κ)
≥ �θ∗�(1+�)ρ − 2�

(1− κ)
≥ �θ∗�ρ,

provided � < ( 1−κ
2 )�ρ�θ∗� and, by (13) and Lemma 7,

sup
θ∈A
�Mn(θ)� ≥ sup

θ∈A
�M(θ)� − �

≥ �θ∗�(1− κ)− �
≥ 40σ(1− κ)− �
≥ 20σ,

provided � < 20σ(1− 2κ), which is positive since κ < 1/2.
For δ ∈ (0, 1), let �M (n, δ) be the smallest number such

that for any fixed θ in A, we have

�Mn(θ)− M(θ)� ≤ �M (n, δ),

with probability at least 1 − δ. Moreover, suppose c� =
c�(ρ, σ, �θ∗�, �θ0�) is a constant so that if n ≥ c�, then

�M (n, δ) ≤ min

{
20σ(1− 2κ),

(
1− κ

2

)
�ρ�θ∗�

}
.

This guarantees that Mn(A) ⊆ A. For any iteration t ∈ [T ],
we have

�Mn/T (θ
t )− M(θ t )� ≤ �M (n/T, δ/T ),

with probability at least 1− δ/T . Thus by a union bound and
Mn(A) ⊆ A,

max
t∈[T ] �Mn/T (θ

t )− M(θ t )� ≤ �M (n/T, δ/T ),

with probability at least 1− δ.
Hence if θ0 belongs to A, then by Lemma 1,

�θ t − θ∗� = �Mn/T (θ
t−1)− θ∗�

≤ �M(θ t−1)− θ∗� + �Mn/T (θ
t )− M(θ t )�

≤ γ �θ t−1 − θ∗� + max
t∈[T ] �Mn/T (θ)− M(θ)�

≤ γ �θ t−1 − θ∗� + �M (n/T, δ/T ),

with probability at least 1−δ. Solving this recursive inequality
yields,

�θ t − θ∗� ≤ γ t�θ0 − θ∗� + �M (n/T, δ/T )
t−1∑

j=0

γ j

≤ γ t�θ0 − θ∗� + �M (n/T, δ/T )

1− γ ,

with probability at least 1− δ.
Finally, by a slight modification to the proof of [12, Corol-

lary 5] that uses M(θ) ≤ √
σ 2 + 3�θ∗�2 from (A.4), it follows

that if n ≥ cd log(T/δ), then there exists a universal constant
C > 0 such that

�M (n/T, δ/T ) ≤ C
√
σ 2 + �θ∗�2

√
dT log(T/δ)

n

with probability at least 1− δ/T . This completes the proof of
Theorem 1.

VIII. DISCUSSION

In this paper, we showed that the empirical EM iterates
converge to true coefficients of a mixture of two linear
regressions as long as the initial guess lies within a cone (see
the condition on Theorem 1: �θ0, θ�� > ρ�θ0��θ��).

In Fig. 2, we perform a simulation study of θ t ← Mn(θ
t−1)

with σ = 1, n = 1000, d = 2, and θ∗ = (−7/25, 24/25)	. All
entries of the covariate vector X and the noise ε are generated
i.i.d. from a standard Gaussian distribution. We consider the
error �θ t − θ∗� plotted as a function of cosα = �θ0,θ∗�

�θ0��θ∗�
at iterations t = 5, 10, 15, 20, 25 (darker lines correspond
to larger values of t). For each t , we choose a unit vector
θ0 so that cosα ranges between −1 and +1. In accordance
with the theory we have developed, increasing the iteration
size and increasing the cosine angle decreases the overall
error. According to Lemma 2, the algorithm should suffer
when cosα is small. Indeed, we observe a sharp transition
at cosα ≈ 0.2. The algorithm converges to the other model
parameter −θ∗ = (7/25,−24/25)	 for initial guesses with
cosine angle (approximately) smaller than 0.2. The plot in
Fig. 3 is a zoomed-in version of Fig. 2 near this transition
point.
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Fig. 2. A simulation study of θ t ← Mn (θ
t−1) with σ 2 = 1, n = 1000,

d = 2, and θ∗ = (−7/25, 24/25)	. The values of t range from 5 to 25.
The vertical axis is the error �θ t − θ∗� and the horizontal axis is the cosine
angle between the initial guess θ0 and θ∗. Darker lines correspond to larger
values of t .

Fig. 3. A zoomed-in version of Fig. 2 showing the transition point at
cos α ≈ 0.2.

One of the shortcomings of the EM algorithm is that it
is model dependent, that is, the form of the EM operator is
derived from the assumption of Gaussian input X , error ε,
and two component assumption. It is natural to ask how
changing either distribution and using the original EM operator
designed for Gaussian data performs on simulated data. As a
simple illustration, the simulation results in Fig. 4 use X ∼
Uniform([−√3,

√
3]d) and ε ∼ Uniform([−σ√3, σ

√
3]d)

(Fig. 4(a)) and X ∼ N(0, Id ) and ε ∼ Laplace(0, σ/
√

2)
(Fig. 4(b)) for σ 2 = 1. The performance is similar to Fig. 2
and Fig. 3, although note that in Fig. 4(a), a larger cosine
angle is required for convergence (i.e., cosine angles at least
cosα ≈ 0.4).

More generally, future work would rigorously study the
effect of EM under model misspecification. In this direction,
the recent work of [34] has analyzed the EM algorithm for
over-fitted mixtures.

Fig. 4. A simulation study of θ t ← Mn (θ
t−1) under model misspecification

with σ 2 = 1, n = 1000, d = 2, θ∗ = (−7/25, 24/25)	 . The values of t
range from 5 to 25. The vertical axis is the error �θ t −θ∗� and the horizontal
axis is the cosine angle between the initial guess θ0 and θ∗. Darker lines
correspond to larger values of t . (a) X ∼ Uniform([−√3,

√
3]d ) and ε ∼

Uniform([−√3,
√

3]d ). (b) X ∼ N(0, Id ) and ε ∼ Laplace(0, σ/
√

2).

APPENDIX

In this appendix, we prove Lemma 2 and all other support-
ing lemmas used in the body of the paper.

Proof of Lemma 2: Recall that in general, M(θ) = θ∗A+
θB , where

A = [
2φ(W �θ, X�/σ 2)+ 2(W �θ, X�/σ 2)

×φ�(W �θ, X�/σ 2)− 1
]
,

and

B = 2E

[
(W 2/σ 2)φ�(W �θ, X�/σ 2)

]
.

Suppose �θ, θ∗� = 0. This implies that A = 0. To see this,
note that

E

[
φ(W �θ, X�/σ 2)

]
=E [φ(�Z1|Z2|)]=φ(0)=1/2, (A.1)

and

E

[
W �θ, X�φ�(W �θ, X�/σ 2)

]
= σ 2

E
[
�Z1|Z2|φ�(�Z1|Z2|)

]

= 0. (A.2)

The first equality (A.1) follows from the the fact that if
Z ∼ N(0, 1), then E [φ(z Z)] = 1/2 for all z in R. This
fact is easily established by noting that the derivative with
respect to z is zero everywhere. The expectation in (A.2)
vanishes since we are averaging an odd function with respect
to a symmetric distribution. Next, observe that B = 2(1 +
�θ∗�2/σ 2)E

[
Z2

2φ
�(Z1|Z2|(�θ�/σ 2)

√
σ 2 + �θ∗�2)

]
→ 1 +

�θ∗�2/σ 2 > 1 as θ → 0. By continuity, there exists r > 0
such that if �θ� = r , then B > 1, and hence

�M(θ)− θ∗�2 = �θ − θ∗�2 + (B2 − 1)�θ�2
> �θ − θ∗�2.

This shows that

lim inf�θ,θ∗�↓0, �θ�=r
[�M(θ)− θ∗�2 − �θ − θ∗�2] > 0.
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By continuity, it follows that there exists r � > 0 such that if
0 < �θ, θ∗� < r � then �M(θ) − θ∗�2 > �θ − θ∗�2. It is easy
to see that the set of all points satisfying 0 < �θ, θ∗� < r � and
0 < �θ� < r has positive Lebesgue measure and satisfies the
stated conditions in the lemma. �

For the following lemmas, recall the definitions

A = [
2φ(W �θ, X�/σ 2)+ 2(W �θ, X�/σ 2)

×φ�(W �θ, X�/σ 2)− 1
]
,

B = 2E

[
(W 2/σ 2)φ�(W �θ, X�/σ 2)

]
,

and

κ2 = 1
�
� min

{
�, ��

}+ 1

= max

{
1− |�θ0, θ

��|2
σ 2 + �θ∗�2 , 1− �θ, θ∗�

σ 2 + �θ, θ∗�
}
.

Lemma 3: The cosine angle between θ∗ and M(θ) is
equal to

�θ∗�2 A + �θ, θ∗�B√
(�θ∗�2 A + �θ, θ∗�B)2 + B2(�θ�2�θ∗�2 − |�θ, θ∗�|2) .

(A.3)

If �θ, θ∗� ≥ ρ�θ��θ∗�, then there exists positive � =
�(ρ, σ, �θ∗�, �θ�) such that the cosine angle (A.3) is at least
(1+�)ρ. Moreover, if �θ∗, θ� ≥ 0, then

�θ∗�2(1− κ)2
≤ �M(θ)�2 = �θ∗�2 A2 + �θ�2 B2 + 2�θ, θ∗�AB

≤ σ 2 + 3�θ∗�2, (A.4)

and

�θ∗,M(θ)� = �θ∗�2 A + �θ, θ∗�B ≥ �θ∗�2(1− κ). (A.5)

Proof: The stated expression (A.3) for the cosine angle
between θ∗ and M(θ) comes from the expression �u,v�

�u��v� =�θ∗,M(θ)�
�θ∗��M(θ)� for the cosine angle between two vectors u and v,
and the fact that M(θ) = Aθ∗ + Bθ (see (13)).

Next, we prove the second statement about the lower bound
on (A.3). Let τ = �θ∗��θ� A

B . Observe that

�θ∗�2 A + �θ, θ∗�B√
(�θ∗�2 A + �θ, θ∗�B)2 + B2(�θ�2�θ∗�2 − |�θ, θ∗�|2)
= 1√

1+ �θ�2�θ∗�2−|�θ,θ∗�|2
(�θ∗�2 A

B+�θ,θ∗�)2

≥ 1√
1+ 1−ρ2

(τ+ρ)2

= ρ√
1− (1− ρ2) τ(τ+2ρ)

(τ+ρ)2

≥ ρ√
1− (1− ρ2) τ

τ+ρ

≥ ρ
(

1+ 1

2
(1− ρ2)

τ

τ + ρ
)
, (A.6)

where the last line (A.6) follows from the inequality
1/
√

1− z ≥ 1 + z/2 for all z ∈ (0, 1). Next, note that from
Lemma 7,

A

B
≥ σ 2(1− κ)

2(σ 2 + �θ∗�2)κ3 .

Thus, τ ≥ τ � � σ 2�θ∗�(1−κ)
2�θ�(σ 2+�θ∗�2)κ3 and so we can set

� = 1

2
(1− ρ2)

(
τ �

τ � + ρ
)
> 0.

For the statement in (A.4), the identity

�M(θ)�2 = �θ∗�2 A2 + �θ�2 B2 + 2�θ, θ∗�AB

is an immediate consequence of M(θ) = Aθ∗ + Bθ .
By Lemma 7, A ≥ 1−κ and hence since �θ, θ∗� ≥ 0, we have
�M(θ)�2 ≥ �θ∗�2 A2 ≥ �θ∗�2(1− κ)2.

Next, we will show that �M(θ)�2 ≤ σ 2 + 3�θ∗�2 for all θ
in R

d . To see this, note that by Jensen’s inequality,

�θ,M(θ)� = E

[
(2φ(W �θ, X�/σ 2)− 1)W �θ, X�

]

≤ E [|W �θ, X�|]
≤

√
E

[|W �θ, X�|2]

= σ 2
√
�2 + 3�2

= �θ�
√
σ 2 + �θ∗�2 + 2|�θ0, θ∗�|2.

Next, it can be shown that |2φ(z) + 2zφ�(z) − 1| ≤ √2 and
hence A ≤ √2. Using this, we have

�θ⊥0 ,M(θ)� = A�θ⊥0 , θ∗�
≤ √2�θ⊥0 , θ∗�.

Putting these two facts together, we have

�M(θ)�2 = |�θ⊥0 ,M(θ)�|2 + |�θ0,M(θ)�|2
≤ σ 2 + �θ∗�2 + 2|�θ⊥0 , θ∗�|2 + 2|�θ0, θ

∗�|2
= σ 2 + 3�θ∗�2.

The final statement (A.5) follows from similar arguments
and so we omit them here. �

Lemma 4: If �θ, θ∗� ≥ 0, then

E

[
W �θ, X�φ�(W �θ, X�/σ 2)

]
≥ 0.

Proof: Writing W �θ, X� according to the distributional
equivalent (17), note that the statement is true if

E
[
(αZ + β)φ�(αZ + β)] ≥ 0,

where Z ∼ N(0, 1) and α ≥ 0 and β ≥ 0. This fact is proved
in [32, Lemma 5] or [28, Lemma 1]. �

Lemma 5: The following inequalities hold for all z ∈ R:

|2φ(z)+ 2zφ�(z)− 1| ≤ 1+√
2(1− φ(z)),

and

z2φ�(z) ≤ √
2(1− φ(z)).

Proof: Their validity can easily be established using
mathematical software. �
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Lemma 6: Let α, β > 0 and Z ∼ N(0, 1). Then

E [2(1− φ(α(Z + β)))] ≤ exp

{
−β

2
min{α, β}

}
.

Moreover,

E [2(1− φ(α|Z2|(Z1 + β|Z2|)))] ≤ 1√
βmin{α, β} + 1

.

Proof: The second conclusion follows immediately from
the first since

E [2(1− φ(α|Z2|(Z1 + β|Z2|)))]
= 2EZ2

[
EZ1 [1− φ(α|Z2|(Z1 + β|Z2|))]

]

≤ EZ2

[
exp

{
− Z2

2

2
β min{α, β}

}]

= 1√
βmin{α, β} + 1

.

The last equality follows from the moment generating function
of χ2

1 .
For the first conclusion, we first observe that the

mapping α �→ E [φ(α(Z + β))] is increasing (see
[32, Lemma 5] or [28, Lemma 1]). Next, note the inequality

2(1− φ(z)) ≤ e−z,

which is equivalent to (ez − 1)2 ≥ 0. If α ≥ β, then

E [2(1− φ(α(Z + β)))] ≤ E [2(1− φ(β(Z + β)))]
≤ E

[
e−(β(Z+β))

]

= e−β2/2.

If α ≤ β, then

E [2(1− φ(α(Z + β)))] ≤ E

[
e−(α(Z+β))

]

= eα
2/2−αβ

≤ e−αβ/2.

In each case, we used the moment generating function of a
Gaussian distribution to evaluate the expectations. �

Lemma 7: The following inequalities hold:

1− κ ≤ A ≤ 1+√κ,
and

B ≤ 2(1+ �θ∗�2/σ 2)κ3.

Proof: By Lemma 4 and Lemma 6,

A =
[
2φ(W �θ, X�/σ 2)+ 2(W �θ, X�/σ 2)

×φ�(W �θ, X�/σ 2)− 1
]

≥ E

[
2φ(W �θ, X�/σ 2)− 1

]

≥ 1− κ.

By Lemma 5, Jensen’s inequality, and Lemma 6,

A =
[
2φ(W �θ, X�/σ 2)+ 2(W �θ, X�/σ 2)

×φ�(W �θ, X�/σ 2)− 1
]

≤ E

[
1+

√
2(1− φ(W �θ, X�/σ 2))

]

≤ 1+
√

E
[
2(1− φ(W �θ, X�/σ 2))

]

≤ 1+√κ.
By the inequality φ�(z) ≤ 2(1 − φ(z)) for all z ∈ R and
Lemma 6,

B = 2E

[
(W 2/σ 2)φ�(W �θ, X�/σ 2)

]

≤ 2E

[
2(W 2/σ 2)(1− φ(W �θ, X�/σ 2))

]

= 2(1+ �θ∗�2/σ 2)

×EZ2

[
Z2

2EZ1

[
2

(
1− φ

(
�|Z2|

(
Z1 + �

�
|Z2|

)))]]

≤ 2(1+ �θ∗�2/σ 2)EZ2

[
Z2

2 exp

{
− Z2

2

2

�

�
min

{
�

�
,�

}}]

= 2(1+ �θ∗�2/σ 2)

(
1

�
� min

{
�, ��

}+ 1

)3/2

= 2(1+ �θ∗�2/σ 2)κ3. �

Lemma 8: Define

h(α, β)=E [(2φ(α|Z2|(Z1+β|Z2|))−1)(|Z2|(Z1+β|Z2|))] .
Let α, β > 0. Then

∂

∂α
h(α, β) ≤ 2

α2

(
1

β min{α, β} + 1

)1/4

.

Proof: First, observe that

∂

∂α
h(α, β)=E

[
2φ�(α|Z2|(Z1+β|Z2|))(|Z2|(Z1+β|Z2|))2

]
.

By Lemma 5, Jensen’s inequality, and Lemma 6,

E

[
2φ�(α|Z2|(Z1 + β|Z2|))(|Z2|(Z1 + β|Z2|))2

]

= 1

α2 E

[
2φ�(α|Z2|(Z1 + β|Z2|))(α|Z2|(Z1 + β|Z2|))2

]

≤ 2

α2 E

[√
2(1− φ(α|Z2|(Z1 + β|Z2|)))

]

≤ 2

α2

√
E [2(1− φ(α|Z2|(Z1 + β|Z2|)))]

≤ 2

α2

(
1

βmin{α, β} + 1

)1/4

. �
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