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Chapter 1

Posterior Asymptotic Normality for an
Individual Coordinate in

High-dimensional Linear Regression

Joint work with Prof. David Pollard

Abstract

It is well known that high-dimensional procedures like the LASSO provide biased estimators

of parameters in a linear model. In a 2014 paper Zhang and Zhang showed how to remove

this bias by means of a two-step procedure. We show that de-biasing can also be achieved

by a one-step estimator, the form of which inspires the development of a Bayesian analogue

of the frequentists’ de-biasing techniques.

1.1 Introduction

Consider the regression model

Y = Xb + ε, ε ∼ N(0, In). (1.1)
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The design matrix X is of dimension n × p. The vector Y ∈ Rn is the response and b ∈ Rp

is the unknown parameter. We are particularly interested in the case where p > n, for

which b itself is not identifiable. In such a setting identifiability can be attained by adding a

sparsity constraint, an upper bound on ‖b‖0, the number of nonzero bi’s. That is, the model

consists of a family of probability measures {Pb : b ∈ Rp, ‖b‖0 ≤ s∗}, and the observation Y

is distributed N(Xb, In) under Pb.

We are interested in posterior inference on the vector b, when Y is actually distributed

N(Xβ, In) for some true sparse β. Throughout this paper the notation β is reserved for the

truth, a p-dimensional deterministic vector. The notation b stands for the random vector

with marginal distribution µ (a.k.a. the prior) and conditional distribution µY (a.k.a. the

posterior) given Y .

If p were fixed and X were full rank, classical theorems (the Bernstein-von Mises

theorem, as in (Van der Vaart, 2000, page 141)) gives conditions under which the posterior

distribution of b is asymptotically normal centered at the least squares estimator, with

covariance matrix (XT X)−1 under Pβ.

The classical theorem fails when p > n. Although sparse priors have been proposed

that give good posterior contraction rates Castillo et al. (2015) Gao et al. (2015), posterior

normality of b is only obtained under strong signal-to-noise ratio (SNR) conditions, such as

those of (Castillo et al., 2015, Corollary 2), which forced the posterior to eventually have

the same support as β. Effectively, their conditions reduce the problem to the classical, fixed

dimensional case. However that is arguably not the most interesting scenario. Without the

SNR condition, (Castillo et al., 2015, Theorem 6) pointed out that under the sparse prior,

the posterior distribution of b behaves like a mixture of Gaussians.

There is hope to obtain posterior normality results without the SNR condition if one

considers the situation where only one component of b is of interest, say b1, without

loss of generality. All the other components are viewed as nuisance parameters. As

shown by Zhang and Zhang (2014) in a non-Bayesian setting, it is possible to construct
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asymptotically unbiased estimators such that

β̂1 = β1 +
XT

1 ε

‖X1‖
2
2

+ op

(
1
√

n

)
. (1.2)

Here and subsequently op(·) is a shorthand for a stochastically small order term under Pβ

and Xi denotes the i’th column of X. Similarly X−i denotes the n × (p − 1) matrix formed

by all columns of X except for Xi. For J ⊂ [p] denote by bJ the vector (b j) j∈J in R|J|. Write

b−1 for b[p]\{1}. The ‖ · ‖2 norm on a vector refers to the Euclidean norm.

Approximation (1.2) is useful when ‖X1‖2 = O(
√

n), in which case the expansion (1.2)

implies weak convergence (Pollard, 2002, page 171):

‖X1‖2(̂β1 − β1){ N(0, 1) under Pβ.

Such behavior for ‖X1‖ is obtained with high probability when the entries of X are generated

i.i.d. from the standard normal distribution. More precisely, Zhang and Zhang (2014)

proposed a two-step estimator β̂(ZZ)
1 that satisfies (1.2) under some regularity assumptions

on X and no SNR conditions. The exact form of the estimator β̂(ZZ)
1 will be given in

section 1.2.1. Zhang and Zhang required the following behavior for X.

Assumption 1.1. Let γi = XT
1 Xi/‖X1‖

2
2, and λn =

√
log p

n . There exists a constant c1 > 0 for

which

max
2≤i≤p
|γi| ≤ c1λn.

In addition, maxi≤p ‖Xi‖2 = O(
√

n).

Assumption 1.2. (REC(3s∗, c2)) There exist constants c′ > 0 and c2 > 2 for which

κ(3s∗, c2) = min
J⊂[p],
|J|≤3s∗

inf
b,0,

‖bJC‖1≤c2‖bJ‖1

‖Xb‖2
√

n‖bJ‖2
> c′ > 0. (1.3)
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Assumption 1.3. The model dimension satisfies

s∗ log p = o(
√

n).

Remark 1.1. Assumption 1.2 is known as the restricted eigenvalue condition (Bickel

et al., 2009, page 1710) required for penalized regression estimators such as the LASSO

estimator (Tibshirani, 1996, page 1) and the Dantzig selector (Candes and Tao, 2007,

page 1) to enjoy optimal l1 and l2 convergence rates. Note that assumption 1.2 forces

‖Xi‖2 > c′
√

n for all i ≤ p. Therefore assumptions 1.1 and 1.2 imply that the lengths of all

columns of X are of order Θ(
√

n).

Remark 1.2. Assumptions 1.1 and 1.2 are satisfied with high probability when the n × p

entries of X are generated i.i.d. from a sub-Gaussian random variable with a fixed sub-

Gaussian parameter. Assumption 1.1 can be easily proved via the Markov inequality. For

the proof of assumption 1.2 see Mendelson et al. (2008) and Zhou (2009).

Zhang and Zhang (2014) provided the following theorem.

Theorem 1.1 ((Zhang and Zhang, 2014, Section 2.1, 3.1)). Under assumptions 1.1, 1.2

and 1.3, the estimator β̂(ZZ)
1 has expansion (1.2).

The goal of this paper is to give a Bayesian analogue for Theorem 1.1, in the form

of a prior distribution on b such that as n, p → ∞, the posterior distribution of b1 starts

to resemble a normal distribution centered around an estimator in the form of (1.2). We

provide the following bias corrected version of the sparse prior proposed by Gao, van der

Vaart, and Zhou (2015).
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The bias corrected prior distribution on b ∈ Rp:

1. Let the sparsity level s of b−1 obey the probability mass function π(s) ∝

Γ(s)
Γ(s/2) exp(−2Ds log e(p−1)

s ) for a positive constant D.

2. Denote the projection matrix onto span(X1) by H. Write W = (I − H)X. Let

S |s ∼ Uni f (Zs := {S ⊂ {2, ..., p} : |S | = s,WS is full rank}).

3. Given S , let bS have density fS (bS ) ∝ exp(−η‖WS bS ‖2) for a positive constant η.

Set bS c = 0.

4. Let b1|b−1 ∼ N(−
∑

i≥2 γibi, σ
2
n) where σ2

n � ‖β‖1λn/‖X1‖2 and γi, λn are as defined

in assumption 1.1.

The following is the main result of this paper.

Theorem 1.2. Under assumptions 1.1, 1.2 and 1.3, for each constant η, there exists a

large enough constant D > 0 for which the prior distribution on b described above gives a

posterior distribution of ‖X1‖2(b1 − β̂1) that satisfies

∥∥∥∥L (
‖X1‖2(b1 − β̂1)|Y

)
− N(0, 1)

∥∥∥∥
BL
→ 0 in Pβ, (1.4)

where β̂1 is an estimator of β1 with expansion (1.2).

Here ‖·‖BL denotes the bounded Lipschitz norm, which metrizes the topology of weak

convergence (Dudley, 1972, page 323). The bounded Lipschitz norm between two probabil-

ity measures P and Q on X is defined as ‖P − Q‖BL = sup f |P f − Q f | where the supremum

is over all functions f : X → [−1, 1] with Lipschitz constant at most 1.

An estimator β̂1 with expansion (1.2) is the appropriate centering for the posterior

distribution of b1 given Y . To see that, take the two-sided α-credible interval as an example.

Recall that µY stands for the posterior distribution of b given Y . It is an easy consequence

of (1.4) that (by taking a sequence of bounded Lipschitz functions approaching an indicator
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function):

∣∣∣∣∣∣µY

{
‖X1‖2

∣∣∣∣b1 − β̂1

∣∣∣∣ ≤ Φ−1
(
1 + α

2

)}
− α

∣∣∣∣∣∣→ 0 in Pβ, or

µY

{
b1 ∈

[̂
β1 −

Φ−1((1 + α)/2)
‖X1‖2

, β̂1 +
Φ−1((1 + α)/2)
‖X1‖2

]}
= α + op(1).

On the other hand, for any estimator β̂1 with expansion (1.2), under the assumption that

‖X1‖2 = O(
√

n),

Pβ

{
β1 ∈

[̂
β1 −

Φ−1((1 + α)/2)
‖X1‖2

, β̂1 +
Φ−1((1 + α)/2)
‖X1‖2

]}
= α + o(1).

That is, the Bayesian’s credible interval and the frequentist’s confidence interval are both[̂
β1 − Φ−1((1 + α)/2)/‖X1‖2, β̂1 + Φ−1((1 + α)/2)/‖X1‖2

]
, which covers the truth β1 roughly

α proportion of the time. In other words, Theorem 1.2 implies that the Bayesian inference

on b1 and frequentist inference on β1 are aligned in the asymptotics.

We would like to point out that although our Bayesian analogue of bias correction

matches the frequentist’s treatment in terms of statistical performance, the from of posterior

distribution involves up to 2p integrations and is therefore very expensive to compute.

The paper is organized as follows. We begin by discussing the frequentists’ de-biasing

techniques in section 1.2.1, including the two-step procedure developed by Zhang and

Zhang (2014) and a one-step estimator. We show that the one-step estimator also achieves

de-biasing. In section 1.2.2 we use the form of the one-step estimator to illustrate the

intuition behind the construction of the bias corrected prior distribution. The proof of our

main result Theorem 1.2 is given in section 3.5.
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1.2 Main results

1.2.1 How does de-biasing work?

This section describes the main idea behind the construction of the two-step de-biasing

estimator proposed by Zhang and Zhang (2014). An estimator is proposed to provide

another way of interpreting the two-step procedure. The success of these estimators

inspired us to design a prior distribution that achieves de-biasing under the same set of

assumptions.

In sparse linear regression, penalized likelihood estimators such as the LASSO are often

used and tend to give good global properties, such as control of the l1 loss:

Pβ
{
‖β̃ − β‖1 > Cs∗λn

}
→ 0 as n, p→ ∞ for some C > 0, (1.5)

where λn is as defined in assumption 1.1. For example, (Bickel et al., 2009, Theorem 7.1)

showed that under the REC condition (assumption 1.2) the LASSO estimator satisfies (1.5).

In general, penalized likelihood estimators introduce bias for the estimation of individual

coordinates. To eliminate this bias, Zhang and Zhang (2014) proposed a two-step procedure

using the following idea. First find a β̃ that satisfies (1.5), perhaps via a LASSO procedure.

Then define

β̂(ZZ)
1 = arg min

b1∈R

∥∥∥Y − X−1β̃−1 − b1X1

∥∥∥2

2
. (1.6)

Remark 1.3. The estimator given by (1.6) is not exactly the same as the one that appears

in Zhang and Zhang (2014). Note that β̂(ZZ)
1 can be equivalently written as

β̂(ZZ)
1 = β̃1 +

XT
1 (Y − Xβ̃)

XT
1 X1

.
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Compare with the estimator proposed by Zhang and Zhang (2014) which takes the form

β̂1 = β̃1 +
ZT

1 (Y − Xβ̃)
ZT

1 X1
, (1.7)

where Z1 is some pre-calculated vector, typically obtained by running penalized regression

of X1 on X−1 and taking the regression residual. Getting a Bayesian analogue for (1.7) may

be possible. But we choose to present our findings on the simpler version (1.6) to better

illustrate the idea behind the prior design.

Since β̃−1 is obtained via some penalized likelihood procedure, the estimator in (1.6)

essentially penalizes the size of all coordinates except the one of interest. Under as-

sumptions 1.1, 1.2 and 1.3, the two-step estimator β̂(ZZ)
1 is asymptotically unbiased with

expansion (1.2).

We show in the next theorem that the same asymptotic behavior can be obtained in

a single step. The idea of penalizing all coordinates but one is seen more clearly here.

By leaving one term out of the LASSO penalty, de-biasing is achieved. This observation

inspired us to construct our bias corrected prior (see section 1.2.2) such that the parameter

of interest is not penalized.

Theorem 1.3. Define

β̂ = arg min
b∈Rp

‖Y − Xb‖22 + ηn

∑
i≥2

|bi|

 .
Under assumptions 1.1, 1.2 and 1.3, if ηn is a large enough multiple of nλn, the one-

step de-biasing estimator β̂ achieves l1 control (1.5) and de-biasing of the first coordinate

simultaneously. The estimator for β1 satisfies

β̂1 = β1 +
XT

1 ε

‖X1‖
2
2

+ op

(
1
√

n

)
. (1.8)
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Proof. We will first show that β̂ satisfies (1.5). It is well known that when the penalty

involves all coordinates of b, then the bound on the l1 norm is true (Bickel et al., 2009,

Theorem 7.1). It turned out that leaving one term out the of penalty does not ruin that

property.

As in the proof of (Bickel et al., 2009, Theorem 7.1), we compare the evaluation of the

penalized log-likelihood function at β̂ and the truth β using the definition of β̂.

∥∥∥∥Y − Xβ̂
∥∥∥∥2

2
+ ηn

∥∥∥∥̂β−1

∥∥∥∥
1
≤ ‖Y − Xβ‖22 + ηn‖β−1‖1.

Plug in Y = Xβ + ε, the above is reduced to

∥∥∥∥X(̂β − β)
∥∥∥∥2

2
≤ 2

∑
i≤p

ξi(̂βi − βi) + ηn

(
‖β−1‖1 −

∥∥∥∥̂β−1

∥∥∥∥
1

)
,

where ξi = XT
i ε. With high probability |maxi≤n ξi| ≤ R = C2nλn, in which case we have

∥∥∥∥X(̂β − β)
∥∥∥∥2

2
≤ 2R

∥∥∥∥̂β − β∥∥∥∥
1

+ ηn

(
‖β−1‖1 −

∥∥∥∥̂β−1

∥∥∥∥
1

)
. (1.9)

From here we can bound ‖β−1‖1 − ‖̂β−1‖1 by ‖(̂β − β)−1‖1 using the triangle inequality.

But since βS C = 0, we can obtain a much tighter bound:

‖β−1‖1 −

∥∥∥∥̂β−1

∥∥∥∥
1
≤

∥∥∥∥(̂β − β)S \{1}

∥∥∥∥
1
−

∥∥∥∥̂βS C\{1}

∥∥∥∥
1

=
∥∥∥∥(̂β − β)S \{1}

∥∥∥∥
1
−

∥∥∥∥(̂β − β)S C\{1}

∥∥∥∥
1
.

Combine with (1.9) to deduce that

∥∥∥∥X(̂β − β)
∥∥∥∥2

2
≤ (ηn + 2R)

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
1
− (ηn − 2R)

∥∥∥∥(̂β − β)S C\{1}

∥∥∥∥
1
.
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By choosing ηn to be a large enough multiple of nλn, we have

∥∥∥∥X(̂β − β)
∥∥∥∥2

2
≤ c3nλn

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
1
− c4nλn

∥∥∥∥(̂β − β)S C\{1}

∥∥∥∥
1

(1.10)

for some positive constants c3, c4 with c3/c4 ≤ 2 < c2. Since ‖X(̂β − β)‖2 is always

nonnegative, the inequality above implies

∥∥∥∥(̂β − β)S C\{1}

∥∥∥∥
1
≤

c3

c4

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
1
. (1.11)

Therefore under assumption 1.2, we have

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
2
≤

1
c′
√

n

∥∥∥∥X(̂β − β)
∥∥∥∥

2
.

Combine with (1.10) to deduce that

∥∥∥∥X(̂β − β)
∥∥∥∥2

2
≤c3nλn

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
1

≤c3nλn

√
s∗ + 1

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
2

≤
c3

c′
√

(s∗ + 1) log p
∥∥∥∥X(̂β − β)

∥∥∥∥
2
.

Hence ∥∥∥∥X(̂β − β)
∥∥∥∥

2
≤

c3

c′
√

(s∗ + 1) log p.

Again by assumption 1.2, we can go back to bound the l1 loss.

∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
1
≤
√

s∗ + 1
∥∥∥∥(̂β − β)S∪{1}

∥∥∥∥
2
≤

1
c′

√
s∗ + 1

n

∥∥∥∥X(̂β − β)
∥∥∥∥

2

≤
2c3

(c′)2 s∗λn.

10



From (1.11) we have ∥∥∥∥̂β − β∥∥∥∥
1
≤ 2

(
1 +

c3

c4

)
c3

(c′)2 s∗λn.

That concludes the proof of (1.5). To show (1.8), observe that the penalty term does

not involve b1.

β̂1 = arg min
b1∈R

∥∥∥∥Y − X−1β̂−1 − b1X1

∥∥∥∥2

2

=β1 +
∑
i≥2

γi(βi − β̂i) +
XT

1 ε

‖X1‖
2 . (1.12)

We only need to show the second term in (1.12) is of order op(1/
√

n). Bound the

absolute value of that term with

max
i≥2
|γi| ·

∥∥∥∥̂βS − βS

∥∥∥∥
1
≤ (c1λn) (C1s∗λn) ,

by assumption 1.1 and the l1 control (1.5). That is then bounded by Op(s∗λ2
n) =

op(1/
√

n) by assumption 1.3. �

Remark 1.4. With some careful manipulation the REC(3s∗, c2) condition as in assump-

tion 1.2 can be reduced to REC(s∗, c2). The proof would require an extra step establishing

that |̂β1 − β1| is of order op(‖̂βS − βS ‖1) + Op(1/
√

n).

The ideas in the proofs for the two de-biasing estimators β̂(ZZ)
1 and β̂1 are similar. Ideally

we want to run the regression

arg min
b1∈R
‖Y − X−1β−1 − b1X1‖

2 . (1.13)

That gives a perfectly efficient and unbiased estimator. However β−1 is not observed. It

is natural to replace it with an estimator which is made globally close to the truth β−1 using

a penalized likelihood approach. As seen in the proof of Theorem 1.3, most of the work

goes into establishing global l1 control (1.5). The de-biasing estimator is then obtained by

11



running an ordinary least squares regression like (1.13), replacing β−1 by some estimator

satisfying (1.5), so that the solution to the least squares optimization is close to the solution

of (1.13) with high probability.

1.2.2 Bayesian analogue of de-biasing estimators

In the Bayesian regime, recall that b is the p-dimensional random vector obeying distribution

µ under the prior and µY under the posterior. For the Bayesian analogue to the de-biasing

estimators, it is again essential to establish l1 control on b−1 − β−1, the deviation of b−1

from the truth. Such posterior contraction results were established by Castillo et al. (2015)

and Gao et al. (2015), which already provide the preliminary steps for our Bayesian

procedure. The following lemma in Gao et al. (2015) serves as a Bayesian analogue

of (1.5). It gives conditions under which the sparse prior proposed by Gao et al. (2015)

enjoys the l1 minimax rate of posterior contraction.

Lemma 1.1. (Corollary 5.4, Gao et al. (2015)) Under the following prior distribution,

1. Let s have the probability mass function π(s) ∝ Γ(s)
Γ(s/2) exp(−2Ds log ep

s ).

2. Let S |s ∼ Uni f (Zs := {S ⊂ {1, ..., p} : |S | = s, XS is full rank}).

3. Given the subset selection S , let the coefficients bS have density fS (bS ) ∝ exp(−η‖XS bS ‖),

if the design matrix X satisfies

κ0((2 + δ)s∗, X) = inf
‖b‖0≤(2+δ)s∗

√
s∗‖Xb‖2
√

n‖b‖1
≥ c (1.14)

for some positive constant c, δ, then for each positive constant η there exist constants

c3 > 0 and large enough D > 0 for which

µY {‖b − β‖1 > c3s∗λn} → 0 in Pβ probability,

12



where µY denotes the posterior distribution of b given Y.

Our bias corrected prior described in section 1.1 is obtained by slightly modify the

sparse prior of Gao et al. (2015) to give good, asymptotically normal posterior behavior

for a single coordinate. As discussed in the last section, classical approaches to de-biasing

exploit the idea of penalizing all coordinates except the one of interest. The idea behind the

construction of our bias corrected prior is to essentially put the sparse prior only on b−1.

Recall that H is the matrix projecting Rn to span(X1). Under the model where Y ∼

N(Xb, In), the likelihood function has the factorization

Ln(b) =
1

√
n(2π)n/2

exp
(
−
‖Y − Xb‖22

2

)
=

1
√

n(2π)n/2
exp

(
−
‖HY − HXb‖22

2

)
× exp

(
−
‖(I − H)Y − (I − H)Xb‖22

2

)
.

Write W = (I − H)X−1 and reparametrize b∗1 = b1 +
∑

i≥2 γibi with γi as defined in

assumption 1.1. The likelihood Ln(b) can be rewritten as a constant multiple of

exp
(
−
‖HY − b∗1X1‖

2
2

2

)
exp

(
−
‖(I − H)Y −Wb−1‖

2
2

2

)
.

The likelihood factorizes into a function of b∗1 and b−1. Therefore if we make b∗1 and

b−1 independent under the prior, they will be independent under the posterior. In the

prior construction we made b1|b−1 ∼ N(−
∑

i≥2 γibi, σ
2
n). Hence b∗1 ∼ N(0, σ2

n) and b∗1 is

independent of b−1. Note that under the prior distribution b1 and b−1 are not necessarily

independent.

The sparse prior put on b−1 is analogue to that of (Gao et al., 2015, section 3), using W

as the design matrix in the prior construction. By lemma 1.1, b−1 is close to β−1 in l1 norm

with high posterior probability as long as κo((2 + δ)s∗,W) is bounded away from 0.

13



We main result (Theorem 1.2) states that the prior distribution we propose has the effect

of correcting for the bias, in a fashion analogous to that of the two-step procedure β̂(ZZ)
1 . Let

us first give an outline of the proof. The joint posterior distribution of b∗1 and b−1 factorizes

into two marginals. In the X1 direction, the posterior distribution of b∗1 is asymptotically

Gaussian centered around XT
1 Y
‖X1‖

2
2

= β∗1 +
XT

1 ε

‖X1‖
2
2
. After we reverse the reparametrization we want

the posterior distribution of b1 to be asymptotically Gaussian centered around an efficient

estimator β̂1 = β1 +
XT

1 ε

‖X1‖
2
2

+ op(1/
√

n). Therefore we need to show b∗1 − b1 is very close to

β∗1 − β1. That can be obtained from the l1 control on b−1 − β−1 under the posterior. In the

next section we will give the proof of Theorem 1.2 in detail.

1.3 Proof of Theorem 1.2

Since the prior and the likelihood of b∗1 are both Gaussian, the posterior distribution is also

Gaussian:

b∗1|Y ∼ N
(

σ2
n

1 + ‖X1‖
2
2σ

2
n
XT

1 Y,
σ2

n

1 + ‖X1‖
2
2σ

2
n

)
.

Independence of b∗1 and b−1 under the posterior gives that the above is also the dis-

tribution of b∗1 given Y and b−1. Take β̂1 to be any estimator with expansion (1.2). The

distribution of ‖X1‖2(b1 − β̂1) given Y and b−1 is

N

‖X1‖2

 σ2
n

1 + ‖X1‖
2
2σ

2
n
XT

1 Y −
∑
i≥2

γibi − β̂1

 , σ2
n‖X1‖

2
2

1 + ‖X1‖
2
2σ

2
n

 . (1.15)

Note that without conditioning on b−1, the posterior distribution of b1 is not necessarily

Gaussian.

The main part of the proof of Theorem 1.2 is to show that the bounded-Lipschitz metric

between the posterior distribution of b1 and N (̂β1, 1/‖X1‖
2
2) goes to 0 under the truth. From

Jensen’s inequality and the definition of the bounded-Lipschitz norm we have
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∥∥∥∥L(‖X1‖2(b1 − β̂1)|Y) − N(0, 1)
∥∥∥∥

BL

≤µb−1
Y

∥∥∥∥L(‖X1‖2(b1 − β̂1)|Y, b−1) − N(0, 1)
∥∥∥∥

BL
. (1.16)

Here µb−1
Y stands for the expected value operator under the posterior distribution of b

given Y . The superscript is a reminder that the operator integrates over the randomness of

b−1.

For simplicity denote the posterior mean and variance in (1.15) as νn and τ2
n respectively.

The bounded-Lipschitz distance is always upper bounded by the total variation distance,

and it is at most 2. Therefore

‖N(µ1, σ
2
1) − N(µ2, σ

2
2)‖BL ≤ (|µ1 − µ2| + |σ1 − σ2|) ∧ 2.

Hence (1.16) is bounded by

µb−1
Y (|νn| ∧ 2) + µb−1

Y ((|τn − 1|) ∧ 2) .

Therefore to obtain the desired convergence in (1.4), we only need to show

Pβµ
b−1
Y (|νn| ∧ 2)→ 0, and (1.17)

Pβµ
b−1
Y ((|τn − 1|) ∧ 2)→ 0. (1.18)

To show (1.17), notice that the integrand is bounded. Hence it is equivalent to show

convergence in probability. Write
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|νn| =
σ2

n‖X1‖
3
2

1 + σ2
n‖X1‖

2
2

β1 +
XT

1 ε

‖X1‖
2
2

+
∑
i≥2

γiβi


− ‖X1‖2

∑
i≥2

γibi − ‖X1‖2

(
β1 +

XT
1 ε

‖X1‖
2
2

+ op

(
1
√

n

))

≤
‖X1‖2

1 + σ2
n‖X1‖

2
2

∣∣∣∣∣∣∣β1 +
XT

1 ε

‖X1‖2
+

∑
i≥2

γiβi

∣∣∣∣∣∣∣ +
∑
i≥2

γi(βi − bi) + op(1). (1.19)

The first term is no longer random in b, and it can be made as small as we wish now that it

is decreasing in σn. If we set σ2
n � ‖β‖1λn/‖X1‖2, this term is of order op(1).

For the second term, we will apply lemma 1.1 to deduce that this term also goes to

0 in Pβµ
b−1
Y probability. To apply the posterior contraction result we need to establish the

compatibility assumption (1.14) on W.

Lemma 1.2. Under assumption 1.1, 1.2, 1.3, the matrix W = (I − H)X−1 satisfies

κ0((2 + δ)s∗,W) = inf
‖b‖0≤(2+δ)s∗

√
s∗‖Wb‖2
√

n‖b‖1
≥ c

for some c, δ > 0.

We will prove the lemma after the proof of Theorem 1.2.

To show (1.18), note that the integrand is not a random quantity. It suffices to show

|τn − 1| =

∣∣∣∣∣∣ σ2
n‖X1‖2

1 + σ2
n‖X1‖

2
2

−
1
‖X1‖2

∣∣∣∣∣∣→ 0.

That is certainly true for a {σn} sequence chosen large enough. Combine (1.17), (1.18) and

the bound on the bounded Lipschitz distance, we have shown

Pβ

∥∥∥∥L (
‖X1‖2(b1 − β̂1)|Y

)
− N(0, 1)

∥∥∥∥
BL
→ 0.
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Proof of lemma 1.2. We will justify the compatibility assumption on W in two steps. First

we will show that the compatibility assumption of the X matrix follows from the REC

assumption 1.2. Then we will show that the compatibility constant of X and W are not very

far apart.

Let us first show that under assumption 1.2, there exist constants 0 < δ < 1 and c > 0,

for which

κ0((2 + δ)s∗, X) = inf
‖b‖0≤(2+δ)s∗

√
s∗‖Xb‖2
√

n‖b‖1
≥ c.

Denote the support of g as S . We have

κ0((2 + δ)s∗, X) ≥ inf
‖b‖0≤(2+δ)s∗

1
√

2 + δ

‖Xb‖2
√

n‖bS ‖2

≥ min
J⊂[p],
|J|≤3s∗

inf
b,0,

‖bJC‖1≤c2‖bJ‖1

‖Xb‖2
√

n‖bJ‖2

=κ(3s∗, c2) > 0.

Now, under assumptions 1.1, 1.2 and 1.3, we will show that there exist constants 0 < δ′ < 1

and c′ > 0, for which

κ0((2 + δ′)s∗,W) ≥ κ0((2 + δ)s∗, X) + o(1).

For g ∈ [R]p−1, we have

‖Wg‖2 =

∥∥∥∥∥∥∥∥∥X

0g
 −∑

i≥2

γigi

∥∥∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥∥∥∥X

0g

∥∥∥∥∥∥∥∥∥

2

− λn‖g1‖2
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by assumption 1.1. Deduce that

κ0((2 + δ′)s∗,W) = inf
|b|0≤(2+δ)s∗

√
s∗‖Wb‖2
√

n‖b‖1

≥κ0((2 + δ′)s∗ + 1, X) −

√
s∗

n
λn

=κ0((2 + δ′)s∗ + 1, X) −

√
s∗ log p

n
.

The second term is of order o(1) under assumption 1.3. �
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Chapter 2

Rapid mixing of a Markov chain for an
exponentially weighted aggregation

estimator

Joint work with Prof. David Pollard

Abstract

The Metropolis-Hastings method is often used to construct a Markov chain with a given π

as its stationary distribution. The method works even if π is known only up to an intractable

constant of proportionality. Polynomial time convergence results for such chains (rapid

mixing) are hard to obtain for high dimensional probability models where the size of

the state space potentially grows exponentially with the model dimension. In a Bayesian

context, Yang, Wainwright, and Jordan (2016) (=YWJ) recently used the path method to

prove rapid mixing for high dimensional linear models.

We propose a modification of the YWJ approach that simplifies the theoretical argument

and improves the rate of convergence. The new approach is illustrated by an application to

an exponentially weighted aggregation estimation.
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2.1 Introduction

Markov chain Monte Carlo (MCMC) is a well-known technique for generating observations

from a fixed probability distribution π on the finite state space. For Bayesians π = π(· | Y)

is often a posterior distribution.

Yang, Wainwright, and Jordan (2016) (= YWJ) applied the method to a posterior distri-

bution for a model where the observed Y is modeled as having a N(Xb, σ2In) distribution

for X an observed n × p matrix, with p possibly much larger than n. They followed the

tradition of studying behavior of the posterior under a model Pθ for which Y ∼ N(Xθ, σ2In)

for a sparse vector θ, that is, a vector whose support set T := { j ∈ [p] : θ j , 0} was assumed

to have cardinality no greater than some pre-specified (small) value s∗. One of their main

concerns was to determine how the rate of convergence of the Markov chain to its stationary

distribution depended on s∗, n, p, θ, the prior, and the various assumed properties of the

matrix X. Thy noted a dearth of literature on this topic.

The rate of convergence for a time reversible Markov chain {Zn} with transition matrix P

depends critically on the gap between the largest and second largest singular of P. YWJ

employed the path method developed by Diaconis and Stroock (1991) and Sinclair (1992)

to provide lower bounds for the size of the eigengap, which translated easily into bounds

on the mixing times, the number of steps of the chain {Zn} needed before the total variation

distance between π and the distribution of Zn becomes smaller than any specified ε > 0.

The YWJ chains ran on a state space whose elements they identified with subsets of

columns of X. More precisely, they assumed a prior distribution concentrated on a set

S = {S ∈ {0, 1}p : |S | ≤ s0}, that is it concentrated on vectors b in Rp for which the size of

{ j ∈ [p] : b j , 0} was at most some (suitably small) s0.

The restriction to small sets of columns was natural, given the assumption of a sparse θ

for the model assumed to generate Y . However it had some unfortunate complicating effects
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on construction of the Markov chain and the paths that determine the mixing rate. The main

difficulties arose for sets S on the “boundary” of S as a subset of {0, 1}p, the sets of size s0.

In this note we describe a modification of the YWJ approach that eliminates the

difficulties caused by the boundary. Instead of reanalyzing the YWJ problem (which would

actually improve the mixing rate), we illustrate our approach by an application to the

method of aggregation described by Rigollet and Tsybakov (2012). The setting is similar to

that considered by YWJ. The observed Y is modeled as a sparse linear combination Xb plus

a noise vector ε. The estimator for the mean is taken as a convex combination
∑

S π(S )ΦS Y

of least squares estimators, where ΦS denotes the matrix for orthogonal projection onto the

subspace of Rn spanned by the columns of the n × |S | submatrix XS = (X j : j ∈ S ) of X.

The vector π is defined to be of the form

π(S ) ∝ µ(S ) exp
(
−
‖(I − ΦS )Y‖2 + 2trace(ΦS )

β

)
.

For β = 2, the vector π can be interpreted as a posterior distribution on the space of

least squares projections {ΦS Y}S⊂[p].

We propose a time-reversible Markov chain with state space S equal to the whole of

{0, 1}p with π as its unique stationary distribution. Our main result is stated in Section 2.5.

Roughly speaking, we show that:

Under suitable regularity conditions on the design matrix X and noise distribu-

tion, if we start our proposed Markov chain from a well chosen initial state T̂ ,

then the ε−mixing time of our Markov chain

τε(T̂ ) = inf
t

{
‖Pt(T̂ ) − π‖TV ≤ ε,∀t′ ≥ t

}
.

is bounded by a constant multiple of s∗2 p log p.

Compare with Theorem 2 of YWJ that gave a mixing time of the order O(s2
0 p(n +
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s0) log p). We are able to speed up the convergence of the Markov chain by avoiding the

hard boundary of the state space. Instead we use a chain that encourages jumps from

non-sparse S to a T̂ that is suitably close to the unknown T . One possible T̂ could be

the thresholded lasso estimator studied by Zhou (2010). We also start the chain from T̂ .

Together these modifications lead to both a simpler analysis and a faster rate of convergence

than the YWJ chain.

2.2 Metropolis-Hastings

Suppose π is a probability measure defined on a finite set S. There are simple ways to

construct a Markov chain via a transition matrix P for which π is the unique stationary

distribution by virtue of the time reversibility condition

π(S )P(S , S ′) = π(S ′)P(S ′, S ).

Equivalently, P corresponds to a random walk on a graph with edge weights Q(e) for

e = {S , S ′} such that

π(S ) =
∑

S ′
Q{S , S ′} and P(S , S ′) = Q{S , S ′}/π(S ).

For the Metropolis-Hastings method one starts with a “proposal chain” given by a

transition matrix R then defines P via acceptance/rejection of the proposal. For distinct S

and S ′ one defines

P(S , S ′) = R(S , S ′) min
{

1,
π(S ′)R(S ′, S )
π(S )R(S , S ′)

}
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with P(S , S ) defined so that
∑

S ′ P(S , S ′) = 1. The edge weight then becomes

Q{S , S ′} = min {π(S )R(S , S ′), π(S ′)R(S ′, S )} for S , S ′.

Provided P is irreducible and aperiodic, it has eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λN > −1

where N is the cardinality of the state space S. Diaconis and Stroock (1991, Proposition 3)

proved that, for a P-chain started in state S 0,

∥∥∥Pt(S 0, ·) − π(·)
∥∥∥

TV
≤ 1

2π(S 0)−1/2βt where β := min(|λ2|, |λN |).

Here ‖Pn(S 0, ·) − π(·)‖TV =
∑

S |Pn(S 0, S ) − π(S )|/2.

The upper bound can be simplified by running the lazy version of the P-chain, with

transition matrix P̃ = (IN + P)/2, which has nonnegative eigenvalues (1 + λi)/2. The

corresponding β equals (1 + λ2)/2 ≤ e−(1−λ2)/2, so that

∥∥∥P̃t(S 0, ·) − π(·)
∥∥∥

TV
≤ 1

2π(S 0)−1/2e−t(1−λ2)/2.

The quantity 1 − λ2 is called the spectral gap for the matrix P, which we denote by gap(P).

It is traditional to invert the last bound to see that
∥∥∥P̃t(S 0, ·) − π(·)

∥∥∥
TV
≤ ε when

t ≥ τε(S 0) ≥
2 log(1/2ε) + log(1/π(S 0))

gap(P)
.

For both the YWJ problem and our aggregation example the challenge is to design

chains for which gap(P), does not decrease too rapidly to zero. We follow YWJ in using

the path method of Sinclair (1992) to get an upper bound for 1/gap(P).
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2.3 Paths

The path method provides a lower bound for the spectral gap of a transition matrix for a

time reversible Markov chain on a finite state space S. The method requires construction of

a set of directed paths connecting different states, one path for each pair (S , S ′) with

S , S ′. The path γ(S , S ′) connecting S and S ′ should consist of distinct elements

S 0 = S , S 1, . . . , S m = S ′ of the state space with edge weights Q{S j, S j+1} > 0 for each j.

The path can also be thought of as a sequence of directed edges, (S j, S j+1) for j = 0, . . . ,m.

The path has length len(γ(S , S ′)) = m. The loading of an edge e in S × S is defined as

ρ(e) =
∑

γ(S ,S ′)3e

π(S )π(S ′)/Q(e)

where the sum runs over all paths γ with e as one of the edges. Sinclair (1992, Corollary 6)

showed that

1/gap(P) ≤
(
max
S ,S ′
len((γ(S , S ′))

)
×

(
max
e
ρ(e)

)
. (2.1)

It is important to note that the paths are a theoretical construct that can depend on

information about a Markov chain not known to the MCMC practitioner. For example, the

paths defined by YWJ were allowed to depend on the unknown mean Xθ for the N(Xθ, σ2In)

distribution that generates Y . Indeed they designed paths that involved knowledge of the

support set T = { j : θ j , 0}.

For the YWJ implementation of the Sinclair method one first defines a mapG : S\{T } →

S which decreases the Hamming distance to T : that is, h(S ,T ) > h(G(S ),T ) for each

S ∈ S\{T }. One defines γ(S , S ′) as the unique path joining S to S ′ with (undirected) edges

that are all of the form {W,G(W)} for some W in S. More descriptively, one first joins S

to T by following the direction indicated by G, and similarly for S ′. If the S → T and

S ′ → T paths first meet at state W then γ(S , S ′) follows G from S to W then reverses the
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direction of G to get from W to S ′. We adapt this construction to the aggregation setting.

2.4 Comparison of MCMC stategies

YWJ (equation A2 in the supplement) had a posterior distribution π = πY for which

π(S ) = exp (G(S ,Y) − m(S )) /Z(Y)

with

G(S ,Y) = −
n
2

log
(
1 + g(1 − ‖ΦS Y‖2/‖Y‖2)

)
,

an increasing function of ‖ΦS Y‖2, and

m(S ) = κ|S | log p + |S | log(1 + g)/2,

a function that increases as S gets larger. The constants g and κ depended on the YWJ prior.

The factorZ(Y) was just a normalizing constant.

For the aggregation problem, inspired by work by Castillo et al. (2015) and Gao et al.

(2015) on posterior contraction in the setting of high dimensional linear regression, for

S with size no more than s1 + s∗, we set the weight µ(S ) equal to exp(−D|S | log p) for

dimension penalization. For even larger S , we need a heavier penalization. Set

µ(S ) = exp
(
−D|S | log p −

4n
β
1{|S | > s1 + s∗}

)
.

we have a similar form for the weights π(S ) as in YWJ, with

G(S , y) = ‖ΦS Y‖2 /β and m(S ) = D|S | log p + 2trace(ΦS )/β.
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2.4.1 The YWJ proposal chain

For their proposal R-chain YWJ (page 2502) introduced two types of edges on their state

space S = {S ∈ {0, 1}p : |S | ≤ s0}:

1. single flips that connect a state S to a state S ′ by changing either a single 1 to a 0 or

a single 0 to a 1

2. double flips that change a single 1 to a 0 as well as changing a different 0 to a 1

The single flips join S to another state S ′ at Hamming distance 1 from S . The double

flips join S to another state S ′ at Hamming distance 2 from S , with h(S , ∅) = h(S ′, ∅). The

YWJ proposal chain is designed as follows.

1. with probability 1/2 move via a single flip from S to a site chosen uniformly at

random from the set of neighbors in S at Hamming distance 1 from S

2. with probability 1/2 move via a double flip from S to a site chosen uniformly at

random from the set of neighbors in S at Hamming distance 2 from S

2.4.2 Our proposal chain

Our method uses only single flips and jumps to a state T̂ , which we will soon assume has

size at most s∗, with high Pθ probability. Define Sk = {S ∈ S : |S | = k}. We replace the

hard boundary at s0 by a soft boundary at s1 = 3s∗. Our proposal R-chain allows these

moves:

1. If |S | ≤ s1 and S , T̂ then move via a single flip from S to a site chosen uniformly at

random from the set of neighbors at Hamming distance 1 from S .

2. If |S | > s1 then, with probability 1/2 move to T̂ and with probability 1/2 move via a

single flip from S to a site chosen uniformly at random from the set of neighbors at

Hamming distance 1 from S .
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3. For a move from T̂ , with probability 1/2 move via a single flip to a site chosen

uniformly at random from the set of neighbors at Hamming distance 1 from S , and

with probability 1/2 first choose uniformly at random an integer k with s1 < k ≤ p,

then jump to an S ′ chosen uniformly at random from Sk.

It will be important to have π(T̂ ) not too small—the choice T̂ = ∅ does not work for our

approach. The steps of the chain involving T̂ are much easier to handle than the double

flips of the YWJ method.

2.4.3 The YWJ paths

YWJ defined paths by means of a map G : S\{T } → S , constructed as follows.

1. If S ⊃ T define G(S ) by flipping a single 1 from S \{T } to a 0. (The choice of the

particular bit from S \{T } is not important.)

2. If T is not a subset of S and |S | < s0 change a 0 in T\S to a 1 by the single flip that

gives the largest ‖ΦS ′Xθ‖.

3. If T is not a subset of S and |S | = s0, let S(S ) be the result of a double flip to an S ′

for which ‖ΦS ′Xθ‖ is the largest.

The general YWJ strategy is to first build S up to a superset of T by single flips then

reduce to T by single flips. The sets S on the boundary complicate the idea because a flip

of a single 0 would lead to a G(S ) outside the state space. The double flips are needed to

keep |G(S )| ≤ s0. The map G takes an S on the boundary to another S ′ on the boundary.

2.4.4 Our choice of paths

We follow YWJ in constructing paths by means of a a map G : S\{T } → S, but with a

slightly different choice for G. Our choice avoids the difficulties with the boundary.

DefineU = {S ∈ S : |S \T | ≤ s1}. Notice that |S | > s1 for each S in S\U.
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1. If S ⊃ T and S ∈ U define G(S ) by flipping a single 1 from S \{T } to a zero. (The

choice of the particular bit from S \{T } is not important.)

2. If T is not a subset of S and S ∈ U change a 0 in T\S to a 1 by the single flip that

gives the largest ‖ΦS ′Xθ‖.

3. If S ∈ S\U define G(S ) = T̂ .

Our G also ensures that h(G(S ),T ) < h(S ,T ) for all S ∈ S\{T }.

2.5 Our main theorem

Remember that the aggregation weights are given by

π(S ) = exp (G(S ,Y) − m(S )) /Z(Y)

with

G(S ,Y) = ‖ΦS Y‖2 /β and m(S ) = D|S | log p + 2trace(ΦS )/β, (2.2)

for positive constants β and D that need to be specified.

Define sets:

An =

{
|T̂ | ≤ s1 − s∗,

∥∥∥(I − ΦT̂ )Xθ
∥∥∥2
≤ cs∗ log p

}
.

En =

{
max
|S |≤s1, j<S

∣∣∣∣〈(I − ΦS )X j, ε
〉∣∣∣∣2 ≤ nLν log p, ‖ε‖2 ≤ 2n

}
.

We need bothAn and En to occur with high probability. YWJ assumed that

Eθ max
|S |≤s0, j<S

∣∣∣∣〈(I − ΦS )X j, ε
〉∣∣∣∣ ≤ √

nLν log p/2,

which ensures that the first condition in En occurs with probability at least 1−exp(−Lν log p/8).

See Section 2.9 for assumptions that ensureAn occurs with high probability.
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Theorem 2.1. Assume

1. All columns of the design matrix have length
√

n. There exists a constant ν > 0 such

that

‖XS w‖2 ≥ nν‖w‖2 for each w ∈ RS and S ⊂ [p] with |S | ≤ s1 + s∗.

2. min j∈T |θ j|
2 ≥ θ2

min ≥
(
8βD log p

)
/(nν2).

If D is chosen to be greater than 4 + (4L + 2c)/β, then on the setAn ∩ En, we have

1/gap(P) ≤ 12p(s1 + s∗).

Corollary 2.1. Under the assumptions of Theorem 2.1, on the setAn ∩ En,

τε(T̂ ) ≤ 12p(s1 + s∗)
(
log

1
2ε

+ 2Ds∗ log p
)
.

YWJ assumption B required max|S |≤s0 λmin(XT
S XS /n) ≥ ν, which is equivalent to our

assumption 1 except that they had the much larger s0 in place of our s1 + s∗. YWJ needed the

larger s0 value to accommodate their double flips. We are able to weaken their assumption

by avoiding the difficulty around the boundary of the state space.

2.6 Proof of Theorem 2.1

As with the YWJ construction, our map G (described in Section 2.4.4) defines a directed

tree on S with T as the root. Following YWJ, we denote the collection of states on the

subtree with root S (including S ) as Λ(S ). That is, Λ(S ) consists of all S ′ for which the

G-path from S ′ to T passes through S .

To bound the length of the longest path, notice that the length of a path from a state I to
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a state F is at most the length of γI,T and γT,F combined. For all S ∈ U, h(S ,T ) ≤ 3s∗. All

other states are pulled to T̂ ∈ U in one step. It follows that

max
S ,S ′
len({γ(S , S ′)) ≤ 2(s1 + s∗).

The argument for the loadings requires more work. It is easy to see that a path from

I to F passes through a directed edge e = (S , S ′) if and only if I ∈ Λ(S ) and F < Λ(S ).

Therefore the loading of edge e can be written as

ρ(e) =

∑
I,F π(I)π(F) : e ∈ γ{I, F}

Q(e)
=
π(Λ(S ))(1 − π(Λ(S )))

π(S )P(S , S ′)
. (2.3)

We need an upper bound for the ratio π(Λ(S )/π(S )) and a lower bound for P(S , S ′). To

that end we will establish three inequalities:

(a) P(S ,G(S )) ≥ 1/(2p) for each S in S\{T }.

(b) If S ∈ S\U then π(Λ(S )/π(S )) ≤ 1.

(c) If S ∈ Uc then π(Λ(S )/π(S )) ≤ 3.

From these three facts it follows that

ρ(e = {S , S ′}) ≤
π(Λ(S ))
π(S )

·
1

P(S , S ′)
≤ 6p

so that, by (2.1),

1/gap(P) ≤ 2(s1 + s∗) × 6p.

Our proofs of the claims requires control of the ratio π(S )/π(S ′) for various pairs S , S ′.

The necessary facts are contained in the following lemma, whose proof appears in Sec-

tion 2.7. It is there that the main technical differences between the YWJ argument and ours

appear.
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Lemma 2.1. Under the assumptions of Theorem 2.1, for each S in S\{T },

π(S )

π(T̂ )
≤ exp

−D(|S | − 2s∗) log p +
4s∗

β
+

(√
cs∗ +

√
L|S |

)2
log p

β

 (2.4)

and

π(S )
π(G(S ))

≤


exp

(
−1

2 D log p
)

if S ⊃ T and S ∈ U (2.5)

exp
(
−D log p + 2/β

)
if T\S , ∅ and S ∈ U (2.6)

exp
(
−2|S | log p

)
if S ∈ Uc. (2.7)

Proof of claim (a). We claim that P(S ,G(S )) = R(S ,G(S )) for all S . Recall that the R

matrix contains our proposal probabilities in the Metropolis-Hasting algorithm. We are

claiming that all proposals from S to G(S ) get accepted with probability 1. This is not true

for every edge in the Markov chain. But when constructing G and the paths, we deliberately

chose to only use the “clear acceptance” edges to bear the weight. For S ∈ U, because the

proposal from S ∈ U to G(S ) ∈ U is symmetric, we have

P(S ,G(S )) = R(S ,G(S )) min
{

1,
π(G(S ))
π(S )

}
.

By lemma 2.1, we have π(G(S )) ≥ π(S ) for all S ∈ U. Therefore the proposal always gets

accepted.

For S ∈ S\U, G(S ) = T̂ . We have asymmetric proposal probabilities between S and T̂ .

P(S , T̂ ) =
1
2

min

1,
π(T̂ )R(T̂ , S )

π(S )R(S , T̂ )

 .
From our proposal scheme, R(T̂ , S ) = 1

2

(
(p − 2s∗)

(
p
|S |

))−1
and R(S , T̂ ) = 1/2. From (2.4),
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we have
π(T̂ )R(T̂ , S )

π(S )R(S , T̂ )
≥ exp

(
|S | log p − |S | − log p

)
≥ 1.

Therefore P(S , T̂ ) = 1/2. For all S ∈ U, it is easy to see that R(S ,G(S )) ≥ 1/(2p). Deduce

that P(S ,G(S )) ≥ 1/(2p) for all S , T .

�

Proof of claim (b). In this case S is a leaf node on the tree, and Λ(S ) = {S }. Therefore

π(Λ(S ))/π(S ) = 1. �

Proof of claim (c). Split the set Λ(S ) in two parts: Λ(S ) ∩U and Λ(S )\U. If the second

part is nonempty, then T̂ must also be an offspring of (or is equal to) S , in which case

π(S ) ≥ π(T̂ ). We have

π(Λ(S ))
π(S )

≤
π(Λ(S ) ∩U)

π(S )
+
π(Uc)

π(T̂ )
.

The set Λ(S ) ∩ U can be split into layers on the tree. Denote Sk(S ) = {S̃ ∈ S :

dH(S , S̃ ) = k}.

π(Λ(S ) ∩U)
π(S )

=
∑
k≥0

π(Λ(S ) ∩U ∩ Sk(S ))
π(S )

≤
∑
k≥0

|Λ(S ) ∩U ∩ Sk(S )| exp
(
−

Dk log p
2

)
≤

∑
k≥0

exp
(
k + k log p −

Dk log p
2

)
=

1
1 − exp

(
−(D/2 − 1) log p + 1

) ≤ 2.
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(2.7) implies

π(Uc)

π(T̂ )
=

∑
k>2s∗

π((S\U) ∩ Sk)

π(T̂ )

≤
∑
k>2s∗

exp
(
−k log p + k

)
≤ 1.

Deduce that π(Λ(S ))/π(S ) ≤ 3 for S ∈ U.

�

2.7 Proof of Lemma 2.1

Each of the assertions of the lemma relies on a simple consequence of assumption 1 from

Theorem 2.1. If A and B are disjoint subsets of [p] with |A| + |B| ≤ s1 + s∗ then

‖XAr + XBt‖2 ≥ nν(‖r‖2 + ‖t‖2)

for all r ∈ RA and b ∈ RB. If we choose r so that XAr = −ΦAXBt then ignore the ‖r‖2 on the

right-hand side we get

‖(I − ΦA)XBt‖ ≥ nν‖t‖2 for each t in RB,

which implies that the smallest singular value of the n × |B| matrix (I − ΦA)XB is no less

than
√

nν. It follows that

∥∥∥XT
B (I − ΦA)XBt

∥∥∥2
≥ (nν)2‖t‖2 for each t in RB. (2.8)
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Proof of (2.5). By construction G(S ) = S \{ j} for some j in S \T and

G(S ,Y) −G(G(S ),Y) =

(
‖ΦS Y‖2 −

∥∥∥ΦG(S )Y
∥∥∥2

)
/β

=
∥∥∥(ΦS − ΦG(S )

)
Y
∥∥∥2
/β =

∥∥∥(ΦS − ΦG(S )
)
ε
∥∥∥2
/ε

because ΦG(S )Xθ = ΦS Xθ = Xθ. The difference ΦS − ΦG(S ) projects orthogonally onto the

subspace spanned by z = (I − ΦG(S ))X j, so that

(
ΦS − ΦG(S )

)
ε = 〈z, ε〉/‖z‖.

Inequality (2.8) with A = G(S ) and B = { j} gives

‖z‖2 =
∥∥∥(I − ΦG(S ))X j

∥∥∥2
≥ nν.

Thus ∥∥∥(ΦS − ΦG(S )
)
ε
∥∥∥2
≤

∣∣∣∣〈(I − ΦG(S ))X j, ε
〉∣∣∣∣2 /(nν),

which is bounded above by L log p on the set En.

The dimension penalization contributes

m(S ) − m(G(S)) = D log p +
2
β

(
trace(ΦS ) − trace(ΦG(S ))

)
≥ D log p.

Deduce that

π(S )
π(G(S ))

= exp (G(S ,Y) −G(G(S ),Y) − (m(S ) − m(G(S))))

≤ exp
(
−D log p +

L log p
β

)
≤ exp

(
−

D log p
2

)
if D >

2L
β
.

36



�

Proof of (2.6). Here T\S is nonempty. By construction G(S ) = S ∪ { jS } where jS =

arg max j∈T\S

∥∥∥ΦS∪{ jS }Xθ
∥∥∥.

This time ΦS∪{ j} −ΦS projects orthogonally onto the space spanned by z j := (I −ΦS )X j.

Once again inequality (2.8) implies that ‖z j‖
2 ≥ nν for each j in T\S , so that

∥∥∥∥(ΦS∪{ j} − ΦS

)
ε
∥∥∥∥2
≤

∣∣∣∣〈(I − ΦG(S )
)

X j, ε
〉∣∣∣∣2 /(nν) for j ∈ T\S .

In particular, with j = jS , we get

∥∥∥(ΦG(S ) − ΦS
)
ε
∥∥∥2
≤ L log p on the set En. (2.9)

To control the G contribution to π(S )/π(G(S )) we first note that

∥∥∥(ΦG(S ) − ΦS
)

Y
∥∥∥ ≥ ∥∥∥(ΦG(S ) − ΦS

)
Xθ

∥∥∥ − ∥∥∥(ΦG(S ) − ΦS
)
ε
∥∥∥ . (2.10)

YWJ (Lemma 8) showed that, under our assumption 1,

∥∥∥(ΦG(S ) − ΦS
)

Xθ
∥∥∥ ≥ √nνmin

j∈T
|θ j|. (2.11)

For completeness we will prove why that is true. By the choice of jS ,

∥∥∥(ΦG(S ) − ΦS
)

Xθ
∥∥∥2
≥

1
|T\S |

∑
j∈T\S

∥∥∥∥(ΦS∪{ j} − ΦS

)
Xθ

∥∥∥∥2

≥
1
|T\S |

∑
j∈T\S

|〈z j, Xθ〉|2/‖z j‖
2. (2.12)

To simplify notation write B for T\S . We bound ‖z j‖
2 from above by ‖X j‖

2 = n. The
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inner product term simplifies slightly because

(I − ΦS )Xθ = (I − ΦS )XBθB,

The projection killing off contributions from X j’s with j ∈ S . The z j’s can be thought of as

the columns of the matrix ZB = (I − ΦS )XB. The sum
∑

j∈B z jzT
j equals ZBZT

B . Thus

∑
j∈B

〈z j, XBθB〉
2 =(XBθB)T ZBZT

B XBθB

=
∥∥∥XT

B (I − ΦS )XBθB

∥∥∥2

≥(nν)2‖θB‖
2 by inequality (2.8). (2.13)

Inequalities (2.12) and (2.13) combine to give

∥∥∥(ΦG(S ) − ΦS
)

Xθ
∥∥∥2
≥

n2ν2‖θB‖
2

n|B|
≥ nν2 min

j∈B
θ2

j ,

which implies (2.11).

Together, inequalities (2.9), (2.10) and (2.11) imply

g(S ,Y) − g(G(S ),Y) ≤ −
( √

8βD log p −
√

L log p
)2
/β ≤ −2D log p.

We also have

m(S ) − m(G(S )) = −D log p −
2
β

(
trace(ΦS ) − trace(ΦG(S ))

)
≥ −D log p −

2
β
.

Deduce that
π(S )

π(G(S ))
≤ exp

(
−D log p +

2
β

)
.

�
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Proof of (2.4). Write

G(S ,Y) −G(T̂ ,Y) =
1
β

(
‖ΦS Y‖2 −

∥∥∥ΦT̂ Y
∥∥∥2

)
.

The set T̂ may not be contained in the set S . We use a little trick to remedy the problem.

‖ΦS Y‖2 − ‖ΦT̂ Y‖2

≤
∥∥∥ΦS∪T̂ Y

∥∥∥2
− ‖ΦT̂ Y‖2

=
∥∥∥∥(ΦS∪T̂ − ΦT̂

)
Y
∥∥∥∥2

≤

(∥∥∥∥(ΦS∪T̂ − ΦT̂

)
Xθ

∥∥∥∥ +
∥∥∥∥(ΦS∪T̂ − ΦT̂

)
ε
∥∥∥∥)2

≤

(∥∥∥∥(I − ΦT̂

)
Xθ

∥∥∥∥ +
∥∥∥∥(ΦS∪T̂ − ΦT̂

)
ε
∥∥∥∥)2

.

On the setAn, we have
∥∥∥∥(I − ΦT̂

)
Xθ

∥∥∥∥2
≤ cs∗ log p.

For the ε term, if |S | > s1 + s∗, we bound it by ‖ε‖ ≤
√

2n. If |S | ≤ s1 + s∗, we break

the term into a sum. Suppose (S ∪ T̂ )\T̂ = {k[1], ..., k[m]}, where m ≤ |S |. Temporarily

write B j for T̂ ∪ {k[1], ..., k[ j]}, with B0 = T̂ . Define z j := (I −ΦB j−1)Xk[ j]. Then ΦBm−1 −ΦB0

projects orthogonally onto the subspace spanned by the orthogonal vectors z1, ..., zm. It

follows that ∥∥∥(ΦBm−1 − ΦB0

)
ε
∥∥∥2

=

m∑
j=1

〈z j, ε〉
2/

∥∥∥z j

∥∥∥2
.

Each summand can be handled in almost the same way as for the proof of (2.5), leading

to the bound ∥∥∥∥(ΦS∪T̂−ΦT̂

)
ε
∥∥∥∥ ≤ √

L|S | log p +
√

2n1 {|S | > s1 + s∗} .
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The dimension penalization terms give

m(S ) − m(G(S ))

=D(|S | − |T̂ |) log p +
2
β

(trace(ΦS ) − trace(ΦT̂ )) +
4n
β
1 {|S | > s1 + s∗}

≥D(|S | − 2s∗) log p −
4s∗

β
+

4n
β
1 {|S | > s1 + s∗} .

We have

π(S )

π(T̂ )
≤ exp

−D(|S | − 2s∗) log p +
4s∗

β
+

(√
cs∗ +

√
L|S |

)2
log p

β


for all S ∈ S.

�

Proof of (2.7). For S ∈ UC, the size of S is larger than s1 = 3s∗. Apply (2.4) to deduce

that

π(S )

π(T̂ )
≤ exp

(
−

(
D −

2L
β

)
|S | log p +

(
2D +

2c
β

)
s∗ log p +

4s∗

β

)
≤ exp

(
−

(
D
3
−

2L
β
−

2c
3β
−

4
3β

)
|S | log p

)
.

Choose D > (6L + 2c + 6β + 4)/β so that π(S )/π(T̂ ) ≤ exp(−|S | log p). �

2.8 Proof of Corollary 2.1

Theorem 2.1 provides us with a bound on the eigengap of P. We only need to show that

π(T̂ ) is not too small.
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Recall that Sk = {S ∈ S : |S | = k}, from (2.4),

π(Nk)

π(T̂ )
≤ exp

(
k log p +

4s∗

β
− D(k − 2s∗) log p +

(2cs∗ + 2Lk) log p
β

)
.

If k > s1, we could use the assumption D > (6L + 2c + 6β + 4)/β to further bound the

ratio by exp(−k log p). Deduce that

π(∪k>s1Nk)

π(T̂ )
≤

∑
k>s1

exp(−k log p) ≤ exp(−s1 log p). (2.14)

If k ≤ s1, we have

π(Nk)

π(T̂ )
≤ exp

((
2D +

2c
β

)
s∗ log p +

4s∗

β

)
. (2.15)

Combine (2.14) and (2.15) and it follows that

log
(

1

π(T̂ )

)
= log

 p∑
k=0

π(Nk)

π(T̂ )


≤ log

(
exp(−s1 log p) + s1 exp

((
2D +

2c
β

)
s∗ log p +

4s∗

β

))
≤3Ds∗ log p for D large enough.

2.9 Choice for the initializer

Theorem 2.1 holds for all initializers in the set

An =

{
|T̂ | ≤ s1 − s∗,

∥∥∥(I − ΦT̂ )Xθ
∥∥∥2
≤ cs∗ log p

}
.

When s1 is taken to be a constant multiple of s∗, Zhou (2010) showed that the thresh-

olded LASSO estimator falls in An with high probability under mild assumptions. For
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completeness we will give the form of the estimator and the proof for controlling its

prediction risk here.

Write λn for
√

log p/n. The LASSO estimator is defined as

θ̂ = arg min
t
‖Y − Xt‖2 + αλn‖t‖1.

Define δ = θ̂ − θ. Bickel, Ritov, and Tsybakov (2009, Theorem 7.2) showed that

under the restricted eigenvalue condition κ = κ(s∗, 3) > 0, on a set with probability at least

1 − p1−α2/32,

‖δ‖1 ≤
8αλn

κ2 s∗, ‖δT ‖ ≤
2αλn

κ2

√
s∗. (2.16)

We define T̂ to be { j : |̂θ j| > 8αλn/κ
2}. The following theorem restates a result of Zhou

(2010, Theorem 1.3). It provides a theoretical guarantee that the eventAn occurs with high

probability for this choice of T̂ .

Theorem 2.2. Under the REC(s∗, 3) condition, on a set with probability at least 1− p1−α2/32,

we have |T̂ | ≤ 2s∗ and

∥∥∥(I − ΦT̂ )Xθ
∥∥∥ ≤ 2α

√
Λmax(s∗)
κ2

√
s∗ log p,

where Λmax = max|S |≤s∗ λmax(XT
S XS /n).

Proof. To handle the size of T̂ , note that

|T̂ | = |T̂ ∩ T | + |T̂\T |.

The first of the inequalities in (2.16) implies that

8αλn

κ2 s∗ ≥ ‖δ‖1 ≥
∑
j∈T̂\T

|δ j| > |T̂\T | ·
8αλn

κ2 ,
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the last inequality comes from the fact that |δ j| = |̂θ j| > 8αλn/κ
2 for all j ∈ T̂\T . It follows

that |T̂\T | ≤ s∗, and therefore T̂ ≤ |T | + s∗ ≤ 2s∗.

For the prediction risk:

∥∥∥(I − ΦT̂ )Xθ
∥∥∥ =

∥∥∥(I − ΦT̂ )XT\T̂θT\T̂

∥∥∥ ≤ ∥∥∥XT\T̂θT\T̂

∥∥∥ ≤ √
nΛmax‖θT\T̂ ‖.

From the second inequality in (2.16), we have ‖θT\T̂ ‖ ≤ ‖δT ‖ ≤ 2αλn
√

s∗/κ2. Conclude that

∥∥∥(I − ΦT̂ )Xθ
∥∥∥ ≤ √

nΛmax
2αλn

κ2

√
s∗ =

√
2αΛmax(s∗)

κ2

√
s∗ log p.

�
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Chapter 3

Fair Quantile Regression

Joint work with Prof. John Lafferty and Prof. David Pollard

Abstract

Quantile regression is a tool for learning conditional distributions. In this chapter we study

quantile regression in the setting where a protected attribute is unavailable when fitting

the model. This can lead to “unfair” quantile estimators for which the effective quantiles

are very different for the subpopulations defined by the protected attribute. We propose a

procedure for adjusting the estimator on a heldout sample where the protected attribute is

available. The main result of the chapter is an empirical process analysis showing that the

adjustment leads to a fair estimator for which the target quantiles are brought into balance,

in a statistical sense that we call
√

n-fairness. We illustrate the ideas and adjustment

procedure on a dataset of 200,000 live births, where the objective is to characterize the

dependence of the birth weights of the babies on demographic attributes of the birth mother;

the protected attribute is the mother’s race.
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3.1 Introduction

Recent research on fairness has formulated interesting new perspectives on machine learning

methodologies and their deployment, through work on definitions, axiomatic characteriza-

tions, case studies, and algorithms (Hardt et al., 2016; Dwork et al., 2012; Kleinberg et al.,

2017; Chouldechova, 2017; Woodworth et al., 2017).

Much of the work on fairness in machine learning has been focused on classification,

although the influential paper of Hardt et al. (2016) considers general frameworks that

include regression. Just as the mean gives a coarse summary of a distribution, the regression

curve gives a rough summary of a family of conditional distributions (Mosteller and Tukey,

1977). Quantile regression targets a more complete understanding of the dependence

between a response variable and a collection of explanatory variables.

Given a conditional distribution FX(y) = P(Y ≤ y | X), the quantile function qτ(X) is

characterized by FX(qτ(X)) = τ, or qτ(X) = F−1
X (τ) = inf{y : FX(y) ≤ τ}. We consider

the setting where an estimate q̂τ(X) is formed using a training set {(Xi,Yi)} for which a

protected attribute A is unavailable. The estimate q̂τ(X) will often give quantiles that are

far from τ, when conditioned on the protected variable. We study methods that adjust the

estimator using a heldout sample for which the protected attribute A is observed.

As example, to be developed at length below, consider forecasting the birth weight of a

baby as a function of the demographics and personal history of the birth mother, including

her prenatal care, smoking history, and educational background. As will be seen, when

the race of mother is excluded, the quantile function may be very inaccurate, particularly

at the lower quantiles τ < 0.2 corresponding to low birth weights. If used as a basis for

medical advice, such inaccurate forecasts could conceivably have health consequences for

the mother and infant. It would be important to adjust the estimates if the race of the mother

became available.
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In this chapter we study the simple procedure that adjusts an initial estimate q̂τ(X) by

adding µ̂τA + ν̂τ, by carrying out a quantile regression of Y − q̂τ(X) onto A. We show that

this leads to an estimate q̃τ(X, A) = q̂τ(X) + µ̂τA + ν̂τ for which the conditional quantiles are

close to the target level τ for both subpopulations A = 1 and A = 0. This result follows from

an empirical process analysis that exploits the special dual structure of quantile regression

as a linear program. Our main technical result is that our adjustment procedure is
√

n-fair

at the population level. Roughly speaking, this means that the effective quantiles for the

two subpopulations agree, up to a stochastic error that decays at a parametric 1/
√

n rate.

We establish this result using empirical process techniques that generalize to more general

types of attributes, not just binary.

In the following section we provide technical background on quantile regression, in-

cluding its formulation in terms of linear programming, the dual program, and methods

for inference. We also provide background on notions of fairness that are related to this

work and give our definition of fairness. In Section 3.3 we formally state the methods and

results. The proof is given in Section 3.5. We illustrate these results on synthetic data and

birth weight data in Section 3.6. We finish with a discussion of the results and possible

directions for future work.

3.2 Background

In this section we review the essentials of quantile regression that will be relevant to our

analysis. We also briefly discuss definitions of fairness.

3.2.1 Linear programming formulation

The formulation of quantile estimates as solutions to linear programs starts with the “check”

or “hockey stick” function ρτ(u) defined by ρτ(u) = (τ − 1)u1{u ≤ 0} + τu1{u > 0}.

For the median, ρ1/2(u) = 1
2 |u|. If Y ∼ F is a random variable, define α̂(τ) as the solution
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to the optimization α̂(τ) = arg mina Eρτ(Y − a). Then the stationary condition is seen to be

0 = (τ − 1)
∫ α

−∞

dF(u) + τ

∫ ∞

α

dF(u) = (τ − 1)F(α) + τ(1 − F(α)),

from which we conclude α̂(τ) = F−1(τ) is the τ-quantile of F. Similarly the conditional

quantile of Y given random variable X ∈ Rp can be written as the solution to the optimization

qτ(x) = arg minq E (ρτ(Y − q) | X = x) . For a linear estimator qτ(X) = XT β̂τ, minimizing the

empirical check function loss leads to a convex optimization β̂τ = arg minβ
∑

i≤n ρτ(Yi−XT
i β).

Dividing the residual Yi − XT
i β into positive part ui and negative part vi yields the linear

program

min
u,v∈Rn,β∈Rp

τ1T u + (1 − τ)1T v, such that Y = Xβ + u − v, u ≥ 0, v ≥ 0.

The dual linear program is then formulated as

max
b

YT b such that XT b = (1 − τ)XT1, b ∈ [0, 1]n. (3.1)

When n > p, the primal solution is obtained from a set of p observations Xh ∈ R
p×p for

which the residuals are exactly zero, through the correspondence β̂τ = X−1
h Yh. The dual

variables b̂τ ∈ [0, 1]n, also known as regression rank scores, play the role of ranks. In

particular, the quantity
∫ 1

0
b̂τ,idτ can be interpreted as the quantile at which Yi lies for the

conditional distribution of Y given Xi (Gutenbrunner and Jurečková, 1992). As seen below,

the stochastic process b̂τ plays an important role in fairness and inference for quantile

regression.

3.2.2 Notions of fairness

Hardt et al. (2016) introduce the notion of equalized odds to assess fairness of classifiers.
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Suppose a classifier Ŷ serves to estimate some unobserved binary outcome variable Y .

Then the estimator is said to satisfy the equalized odds property with respect to a protected

attribute A if

Ŷ y A |Y. (3.2)

This fairness property requires that the true positive rates P{Ŷ = 1 |Y = 1, A} and the false

positive rates P{Ŷ = 1 |Y = 0, A} are constant functions of A. In other words, Ŷ has the

same proportion of type-I and type-II errors across the subpopulations determined by the

different values of A.

This could be extended to a related notion of fairness for quantile regression estimators.

Denote the true conditional quantiles for outcome Y given attributes X as qτ(X). Analogous

to the definition of equalized odds in (3.2), we would call a quantile estimator q̂τ(X) fair if

1
{
Y > q̂τ(X)

}
y A |1 {Y > qτ(X)} . (3.3)

Conditioned on the event {Y ≤ qτ(X)}, we say that
{
Y > q̂τ(X)

}
is a false positive. Condi-

tioned on the complementary event {Y > qτ(X)}, we say that
{
Y ≤ q̂τ(X)

}
is a false negative.

Thus, an estimator is fair if the false positive and false negative rates do not depend on the

protected attribute A.

The notion of fairness that we focus on is a natural one. Considering binary A, we ask

if the average quantiles conditional on the protected attribute agree for A = 0 and A = 1.

More precisely, define the effective quantiles as

τ̂a = P
{
Y ≤ q̂τ(X) | A = a

}
, a = 0, 1. (3.4)

We say that the estimator q̂τ is fair if τ̂0 = τ̂1. Typically when q̂τ is trained on a sample of

size n, exact equality is too strong to ask for. If the estimators are accurate, each of the

effective quantiles should be approximately τ, up to stochastic error that decays at rate
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1/
√

n. We say q̂τ is
√

n-fair if τ̂0 = τ̂1 + Op(1/
√

n). As shall be seen, this fairness property

follows from the linear programming formulation when A is included in the regression. As

seen from the birth weight example in Section 3.6.2, if A is not available at training time, the

quantiles can be severely under- or over-estimated for a subpopulation. This formulation of

fairness is closely related to calibration by group, and demographic parity (Kleinberg et al.,

2017; Hardt et al., 2016; Chouldechova, 2017). An advantage of this fairness definition is

that it can be evaluated empirically, and does not require a correctly specified model.

3.3 Method and Results

With samples (Ai, Xi,Yi) drawn i.i.d. from some joint distribution F on R×Rp×R, consider

the problem of estimating the conditional quantile qτ(y | a, x). Let EF denote the expected

value operator under F, or EF f =
∫

f (a, x, y) dF(a, x, y). Similarly define the probability

operator under F as PF .

Evaluate the level of fairness of an estimator q̂τ(a, x) with

CovF
(
a,1

{
y > q̂τ(a, x)

})
= EF(a − EFa)

(
1

{
y > q̂τ(a, x)

}
− PF

{
y > q̂τ(a, x)

})
.

An estimator with a smaller |CovF(a,1{y > q̂τ})| is considered more fair. This measurement

of fairness generalizes the notion of balanced effective quantiles described in section 3.2.2.

Note that when the protected attribute is binary, CovF(a,1{y > q̂τ}) = 0 is equivalent to

τ̂0 = τ̂1 for τ̂ defined in (3.4).

From an initial estimator q̂τ that is potentially unfair, we propose the following correc-

tion procedure.
On a training set of size n, compute Ri = Yi − q̂τ(Ai, Xi) and run quantile regression

of R on A at level τ. Obtain regression slope µ̂τ and intercept ν̂τ. Define correction

q̃τ(a, x) = q̂τ(a, x) + µ̂τa + ν̂τ.
We show that this estimator q̃τ will satisfy the following:
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1. Faithful: PF{y > q̃τ} ≈ 1 − τ;

2. Fair: CovF(a,1{y > q̃τ}) ≈ 0;

3. Reduced risk: It almost always improves the fit of q̂τ.

Theorem 3.1 and Theorem 3.2 contain the precise statements of our claims.

Theorem 3.1 (Faithfulness and fairness). Suppose (Ai, Xi,Yi)
i.i.d.
∼ F, and Ai −EAi has finite

second moment. Then the corrected estimator q̃τ satisfies

sup
τ

∣∣∣PF{y > q̃τ(a, x)} − (1 − τ)
∣∣∣ =Op

(
1/
√

n
)
, and (3.5)

sup
τ

∣∣∣CovF (a,1{y > q̃τ(a, x)})
∣∣∣ =Op

(
1/
√

n
)
. (3.6)

Furthermore, there exist positive constants C,C1,C2 such that ∀t > C1/
√

n,

P

{
sup
τ

∣∣∣PF{y > q̃τ(a, x)} − (1 − τ)
∣∣∣ > t + p/n

}
≤ C exp

(
−C2nt2

)
. (3.7)

Under the stronger assumption that the distribution of Ai − EAi is sub-Gaussian, there exist

positive constants C,C1,C2,C3,C4 such that ∀t > C1/
√

n,

P

{
sup
τ

∣∣∣CovF (a,1{y > q̃τ(a, x)})
∣∣∣ > t

}
≤ C

(
exp

(
−C2nt2

)
+ exp

(
−C3
√

n
)

+ n exp
(
−C4n2t2

))
.

(3.8)

The following corollary for binary protected attributes is an easy consequence of (3.5)

and (3.6).

Corollary 3.1. If A is binary, then the correction procedure gives balanced effective

quantiles:

τ̂0 = τ + Op(1/
√

n), τ̂1 = τ + Op(1/
√

n).
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Remark 3.1. By modifying the proof of Theorem 3.1 slightly, Corollary 3.1 can be extended

to the case where A is categorical with K categories. In this case the correction procedure

needs to be adjusted accordingly. Instead of regressing R on A, regress R on the span of the

indicators {A = k} for k = 1, ...,K − 1, leaving one category out to avoid collinearity. The

corrected estimators will satisfy τ̂k = τ + Op(1/
√

n) for all categories k = 1, ...,K.

Define R(·) = EFρτ(y−·) as the risk function, where ρτ(u) = τu1{u > 0}+ (1−τ)u1{u ≤

0}.

Theorem 3.2 (Risk quantification). The adjustment procedure q̃τ(A, X) satisfies

R(̃qτ) ≤ inf
µ,ν∈R
R(̂qτ + µA + ν) + Op(1/

√
n).

We note that in the different setting where A is a treatment rather than an observational

variable, it is of interest to obtain an unbiased estimate of the treatment effect µτ. In this

case a simple alternative approach is the so-called “double machine learning” procedure

by Chernozhukov et al. (2016); in the quantile regression setting this would regress the

residual onto the transformed attribute A − Â where Â = Â(X) is a predictive model of A in

terms of X.

3.4 Fairness on the training set

When a set of regression coefficients β̂τ is obtained by running quantile regression of

Y ∈ Rn on a design matrix X ∈ Rn×p, the estimated conditional quantiles on the training

set q̂τ(X) = XT β̂τ are always “fair” with respect to any binary covariate that enters the

regression. Namely, if a binary attribute X j is included in the quantile regression, then no

matter what other attributes are regressed upon, on the training set the outcome Y will lie

above the estimated conditional quantile for approximately a proportion 1 − τ, for each of

the two subpopulations X j = 0 and X j = 1. This phenomenon naturally arises from the
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mathematics behind quantile regression. This section explains this property, and lays some

groundwork for the out-of-training-set analysis of the following section.

We claim that for any binary attribute X j, the empirical effective quantiles are balanced:

Pn{Y > q̂τ(X) | X j = 0} ≈ Pn{Y > q̂τ(X) | X j = 1} ≈ 1 − τ, (3.9)

where Pn denotes the empirical probability measure on the training set.

To see why (3.9) holds, consider the dual of the quantile regression LP (3.1). This

optimization has Lagrangian

L(b, β) = −YT b + βT (XT b − (1 − τ)XT1) = −
∑
i≤n

(Yi − XT
i β)bi − (1 − τ)

∑
i≤n

XT
i β.

For fixed β, the vector b ∈ [0, 1]n minimizing the Lagrangian tends to lie on the “corners” of

the n-dimensional cube, with many of its coordinates taking value either 0 or 1 depending

on the sign of Yi − XT
i β. We thus arrive at a characterization for b̂τ, the solution to the dual

program. For i such that Yi , XT
i β̂τ, b̂τ,i = 1{Yi > XT

i β̂τ}. For i such that Yi = XT
i β̂τ, the

values b̂τ,i are solutions to the linear system that makes (3.1) hold. But with p covariates

and n > p, such equality will typically only occur at most p out of n terms. For large n,

these only enter the analysis as lower order terms. Excluding these points, the equality

constraint in (3.1) translates to

∑
i

Xi j1{Yi > XT
i β̂τ} = (1 − τ)

∑
i

Xi j for all j. (3.10)

Assuming that the intercept is included as one of the regressors, the above implies that

1
n

∑
i

1{Yi > XT
i β̂τ} = 1 − τ,

which together with (3.10), implies balanced effective quantiles for binary X· j. In particular,
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if the protected binary variable A is included in the regression, the resulting model will be

fair on the training data, in the sense that the quantiles for the subpopulations A = 0 and

A = 1 will be approximately equal, and at the targeted level τ.

This insight gives reason to believe that the quantile regression coefficients, when

evaluated on an independent heldout set, should still produce conditional quantile estimates

that are,what we are calling
√

n-fair. In the following section we establish
√

n-fairness

for our proposed adjustment procedure. This requires us to again exploit the connection

between the regression coefficients and the fairness measurements formed by the duality of

the two linear programs.

3.5 Proofs

We first establish some necessary notation. From the construction of q̃τ, the event {y > q̃τ}

is equivalent to {r > µ̂τa + ν̂τ} for r = y − q̂τ(a, x), which calls for analysis of stochastic

processes of the following form. For d ∈ Rn, let

Wd(µ, ν) =
1
n

∑
i≤n

di {Ri > µAi + ν} .

Let Wd(µ, ν) = EWd(µ, ν). It is easy to check that

EF({y > q̃τ}) = W1

(̂
µτ, ν̂τ

)
, CovF(a, {y > q̃τ}) = WA−EA

(̂
µτ, ν̂τ

)
.

The following lemma is essential for establishing concentration results of the W processes

around W, on which the proofs of Theorem 3.1 and Theorem 3.2 heavily rely.

Lemma 3.1. Suppose F is a countable family of real functions on X and P is some

probability measure on X. Let X1, ..., Xn
i.i.d.
∼ P. If

1. there exists F : X → R such that | f (x)| ≤ F(x) for all x and C2 :=
∫

F2dP < ∞;
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2. the collection Subgraph(F ) =
{
{(x, t) ∈ X × R : f (x) ≤ t} : f ∈ F

}
is a Vapnik-

Chervonenkis(VC) class of sets,

then there exist positive constant C1,C2 for which

P

√n sup
f∈F

∣∣∣∣∣∣∣1n ∑
i≤n

f (Xi) −
∫

f dP

∣∣∣∣∣∣∣ > t


≤4E exp

− (
t

C2‖F‖n
− 1

)2 + 4P
{
2‖F‖n > t/C2

}
, ∀t ≥ C1, (3.11)

where ‖F‖n = n−1/2
√∑

F(Xi)2. In particular,
√

n sup f∈F

∣∣∣1
n

∑
i≤n f (Xi) −

∫
f dP

∣∣∣ = Op(1).

We note that more standard results could be used for concentration of measure over VC

classes of Boolean functions, or over bounded classes of real functions. We use the lemma

above because of its generality and to make our analysis self-contained. The proof of this

result is given below.

Recall that CovF(a, {y > q̃τ}) = WA−EA(̂µτ, ν̂τ). We have

sup
τ

|CovF (a, {y > q̃τ(a, x)})| ≤ sup
µ,ν∈R

∣∣∣∣(WA−EA(µ, ν) −WA−EA(µ, ν)
)∣∣∣∣ + sup

τ

∣∣∣WA−EA
(̂
µτ, ν̂τ

)∣∣∣ .
We use Lemma 3.1 to control the tail of the first term using the VC class Subgraph(F )

where F = { f : (a, r) 7→ (a − Ea)1{r > µa + ν} : µ, ν ∈ Q}. For the second term we have

WA−EA
(̂
µτ, ν̂τ

)
=

1
n

∑
i≤n

(Ai − EAi)
{
Ri > µ̂τAi + ν̂τ

}
.

and we exploit the dual form of quantile regression in terms of rank scores together with

large deviation bounds for sub-Gaussian random variables.

The proof of Theorem 3.2 similarly exploits Lemma 3.1, but using the VC class

Subgraph(F ) where F = { f : (a, r) 7→ ρτ(r − µa − ν) : µ, ν ∈ Q}.

Proof of Lemma 3.1. To prove the lemma we first transform the problem into bounding
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the tail of a Rademacher process via a symmetrization technique. Let εi be distributed

i.i.d. Rademacher (P{εi = 1} = P{εi = −1} = 1/2). Write Pn for the empirical (probability)

measure that puts mass n−1 at each Xi. We claim that for all t > 2
√

2C =: C1,

P

√n sup
f∈F

∣∣∣∣∣∫ f dPn −

∫
f dP

∣∣∣∣∣ > t
 ≤ 4P

√n sup
f∈F

∣∣∣∣∣∣∣1n ∑
i≤n

εi f (Xi)

∣∣∣∣∣∣∣ > t
4

 . (3.12)

Proof of (3.12): Let X̃1, ..., X̃n be independent copies of X1, ..., Xn and let P̃n be the corre-

sponding empirical measure. Define events

A f =

{
√

n
∣∣∣∣∣∫ f dPn −

∫
f dP

∣∣∣∣∣ > t
}

; and B f =

{
√

n
∣∣∣∣∣∫ f dP̃n −

∫
f dP

∣∣∣∣∣ ≤ t
2

}
.

For all t > C1,

PB f = 1 − P
{
√

n
∣∣∣∣∣∫ f dP̃n −

∫
f dP

∣∣∣∣∣ > t
2

}
≥ 1 −

Var f (X1)
(t/2)2 ≥ 1 −

∫
F2dP

(t/2)2 ≥
1
2
.

On the other hand, because F is countable, we can always find mutually exclusive events

D f for which

P ∪ f∈F A f = P ∪ f∈F D f =
∑
f∈F

PD f .

Since 2PB f ≥ 1 for all f , the above is upper bounded by 2
∑

f∈F PD fPB f . From indepen-

dence of X and X̃, it can be rewritten as

2
∑
f∈F

P(D f ∩ B f ) = 2P ∪ f∈F (D f ∩ B f ) ≤ 2P ∪ f∈F (A f ∩ B f ),

which is no greater than 2P{
√

n sup f |
∫

f dPn −
∫

f dP̃n| > t/2} since

A f ∩ B f ⊂

{
√

n
∣∣∣∣∣∫ f dPn −

∫
f dP̃n

∣∣∣∣∣ > t/2
}
.
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Because X̃i is an independent copy of Xi, by symmetry f (Xi)− f (X̃i) and εi( f (Xi)− f (X̃i))

are equal in distribution. Therefore

P

√n sup
f∈F

∣∣∣∣∣∫ f dPn −

∫
f dP

∣∣∣∣∣ > t


=P ∪ f∈F A f ≤ 2P

√n sup
f∈F

∣∣∣∣∣∣∣1n ∑
i≤n

εi( f (Xi) − f (X̃i))

∣∣∣∣∣∣∣ > t
2


≤2P

√n sup
f∈F

∣∣∣∣∣∣∣1n ∑
i≤n

εi f (Xi)

∣∣∣∣∣∣∣ > t
4

 + 2P

√n sup
f∈F

∣∣∣∣∣∣∣1n ∑
i≤n

εi f (X̃i)

∣∣∣∣∣∣∣ > t
4


=4P

√n sup
f∈F

∣∣∣∣∣∣∣1n ∑
i≤n

εi f (Xi)

∣∣∣∣∣∣∣ > t
4

 .
That concludes the proof of (3.12).

Denote as Zn( f ) the Rademacher process n−1/2 ∑
εi f (Xi). Let PX be the probability

measure of ε conditioning on X. By independence of ε and X, εi is still Rademacher

under PX, and it is sub-Gaussian with parameter 1. This implies that for all f , g ∈ F ,

Zn( f ) − Zn(g) ∼ subG
(√∫

( f − g)2dPn

)
under PX. In other words,

PX

|Zn( f ) − Zn(g)| > 2

√∫
( f − g)2dPn

√
u

 ≤ 2e−u, ∀u > 0.

We have shown that conditioning on X, Zn( f ) is a process with sub-Gaussian increments

controlled by the L2 norm with respect to Pn. For brevity write ‖ f ‖ for
√∫

f 2dPn. Apply

Theorem 3.5 in Dirksen et al. (2015) to deduce that there exists positive constant C3, such

that for all f0 ∈ F ,

PX

sup
f∈F
|Zn( f ) − Zn( f0)| ≥ C3

(
∆(F , ‖ · ‖)

√
u + γ2(F , ‖ · ‖)

) ≤ e−u ∀u ≥ 1, (3.13)

where ∆(F , ‖ · ‖) is the diameter of F under the metric ‖ · ‖, and γ2 is the generic chaining
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functional that satisfies

γ2(F , ‖ · ‖) ≤ C4

∫ ∆(F ,‖·‖)

0

√
log N(F , ‖ · ‖, δ)dδ

for some constant C4. Here N(F , ‖ · ‖, δ) stands for the δ-covering number of F under

the metric ‖ · ‖. We should comment that the generic chaining technique by Dirksen et al.

(2015) is a vast overkill for our purpose. With some effort the large deviation bounds we

need can be derived using the classical chaining technique.

Because | f | ≤ F for all f ∈ F , we have ∆(F , ‖ · ‖) ≤ 2‖F‖, so that

∫ ∆(F ,‖·‖)

0

√
log N(F , ‖ · ‖, δ)dδ

≤

∫ 2‖F‖

0

√
log N(F , ‖ · ‖, δ)dδ = 2‖F‖

∫ 1

0

√
log N(F , ‖ · ‖, 2δ‖F‖)dδ (3.14)

via change of variables. To bound the covering number, invoke the assumption that

Subgraph(F ) is a VC class of sets. Suppose the VC dimension of Subgraph(F ) is V . By

Lemma 19 in Nolan et al. (1987), there exists positive constant C5 for which the L1(Q)

covering numbers satisfy

N
(
F ,L1(Q), δ

∫
FdQ

)
≤ (C5/δ)V

for all 0 < δ ≤ 1 and any Q that is a finite measure with finite support on X. Choose Q

by dQ/dPn = F. Choose f1, ..., fN ∈ F with N = N(F ,L1(Q), δ
∫

FdQ) and mini

∫
| f −

fi|dQ ≤ δ
∫

FdQ for each f ∈ F . Suppose fi achieves the minimum. Since F is an envelope

function for both f and fi,

∫
| f − fi|

2 dPn ≤

∫
2F | f − fi| dPn,
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which by definition of Q, is equal to

2
∫
| f − fi| dQ ≤ 2δ

∫
FdQ = 2δ

∫
F2dPn.

Take square roots on both sides to deduce that

N (F , ‖ · ‖, 2δ‖F‖) ≤ (C5/δ
2)V .

Plug into (3.14) this upper bound on the covering number to deduce that the integral

in (3.14) converges, and γ2(F , ‖ · ‖) is no greater than a constant multiple of ‖F‖. Recall

that we also have ∆(F , ‖ · ‖) ≤ 2‖F‖. From (3.13), there exists positive constant C6 for

which

PX

sup
f∈F
|Zn( f ) − Zn( f0)| ≥ C6‖F‖

(√
u + 1

) ≤ e−u ∀u ≥ 1.

Take f0 = 0 so we have Zn( f0) = 0. If the zero function does not belong in F , including

it in F does not disrupt the VC set property, and all previous analysis remains valid for

F ∪ {0}. Letting u = (t/4C6‖F‖ − 1)2 yields

PX

sup
f∈F
|Zn( f )| >

t
4

 ≤ exp
− (

t
4C6‖F‖

− 1
)2 , ∀t ≥ 8C6‖F‖.

Under P, ‖F‖ is no longer deterministic. Divide the probability space according to the event

{t ≥ 8C6‖F‖}:

P

sup
f∈F
|Zn( f )| >

t
4

 ≤E1{t ≥ 8C6‖F‖}PX

sup
f∈F
|Zn( f )| >

t
4

 + P{t < 8C6‖F‖}

≤E1{t ≥ 8C6‖F‖} exp
− (

t
4C6‖F‖

− 1
)2 + P{t < 8C6‖F‖}.

Choose C2 = 4C6 and (3.11) follows. �
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Proof of Theorem 3.1. Recall that CovF(a, {y > q̃τ}) = WA−EA(̂µτ, ν̂τ). Therefore

sup
τ

|CovF (a, {y > q̃τ(a, x)})|

= sup
τ

∣∣∣WA−EA(̂µτ, ν̂τ)
∣∣∣

≤ sup
µ,ν∈R

∣∣∣∣(WA−EA(µ, ν) −WA−EA(µ, ν)
)∣∣∣∣ + sup

τ

∣∣∣WA−EA
(̂
µτ, ν̂τ

)∣∣∣ . (3.15)

Use Lemma 3.1 to control the tail of the first term. Apply Lemma 3.1 with

F = { f : (a, r) 7→ (a − Ea)1{r > µa + ν} : µ, ν ∈ Q} .

Note that we are only allowing µ, ν to take rational values because Lemma 3.1 only applies

to countable sets of functions. This restriction will not hurt us because the supremum of the

W processes over all µ, ν ∈ R equals the supremum over all µ, ν ∈ Q. Let F(a, r) = |a − Ea|

be the envelope function. We need to check that Subgraph(F ) is a VC class of sets.

Subgraph(F ) = {{(a, r, t) : (a − Ea)1{r > µa + ν} ≤ t} : µ, ν ∈ R}

= {{(a, r, t) : ({r > µa + ν} ∩ {a − Ea ≤ t}) ∪ ({r ≤ µa + ν} ∩ {t ≥ 0})} : µ, ν ∈ Q} .

(3.16)

Since half spaces in R2 are of VC dimension 3 (Alon and Spencer, 2004, p 221), the

set {{r ≤ µa + ν} : µ, ν ∈ Q} forms a VC class. By the same arguments all four events

in (3.16) form VC classes. Deduce that Subgraph(F ) is also a VC class because the VC

property is stable under any finitely many union/intersection operations. The assumptions
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of Lemma 3.1 are satisfied, which gives that for all t ≥ 2C1/
√

n,

P

{
sup
µ,ν∈R

∣∣∣WA−EA(µ, ν) −WA−EA(µ, ν)
∣∣∣ > t

2

}
≤4E exp

− (
nt

2C2|A − EA|
− 1

)2 + 4P {2|A − EA| > nt/2C2}

≤4 exp

− ( √
nt

2C2u
− 1

)2 + 4P
{
|A − EA| >

√
nu

}
+ 4P {2|A − EA| > nt/2C2} , ∀u > 0.

Here | · | denotes the Euclidean norm in Rn. Under the assumption that Ai has finite second

moment, we could pick u to be a large enough constant, and pick t to be a large enough

constant multiple of 1/
√

n to make the above arbitrarily small. In other words,

sup
µ,ν∈R

∣∣∣WA−EA(µ, ν) −WA−EA(µ, ν)
∣∣∣ = Op

(
1
√

n

)
.

Under the stronger assumption that Ai − EAi is sub-Gaussian, we have that (Ai − EAi)2 −

Var(Ai) is sub-exponential. Choose u to be a large enough constant and we have

P
{
|A − EA| >

√
nu

}
= P

 1
√

n

∑
i≤n

(Ai − EAi)2 >
√

nu2

 ≤ exp(−C4(
√

nu2 − 1)).

Similarly if t > C1/
√

n for some large enough constant C1, there exists C5 > 0 such that

P {2|A − EA| > nt/2C2} ≤ exp
(
−C5(nt2 − 1)

)
.

Organizing all the terms yields for some positive constants C,C1,C2,C3 whose values may

have changed from previous lines,

P

{
sup
µ,ν∈R

∣∣∣WA−EA(µ, ν) −WA−EA(µ, ν)
∣∣∣ > t

2

}
≤ C

(
exp

(
−C2nt2

)
+ exp

(
−C3
√

n
))
, ∀t > C1/

√
n.
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For the second term of (3.15), write

WA−EA
(̂
µτ, ν̂τ

)
=

1
n

∑
i≤n

(Ai − EAi)
{
Ri > µ̂τAi + ν̂τ

}
.

By the dual form of quantile regression (Gutenbrunner and Jurečková, 1992, p 308), there

exists regression rank scores bτ ∈ [0, 1]n such that

AT b = (1 − τ)AT
1, 1

T b = (1 − τ)n, and

bτ,i = 1{Ri > µ̂τAi + ν̂τ}, ∀i < Mτ,

for some Mτ ⊂ [n] of size at most p. As a result,

sup
τ

∣∣∣WA−EA
(̂
µτ, ν̂τ

)∣∣∣
≤

1
n

sup
τ

∣∣∣∣∣AT bτ − EA1
1
n
1

T bτ
∣∣∣∣∣ +

1
n

sup
τ

∣∣∣∣∣∣∣∑i∈Mτ

(Ai − EAi)
(
bτ,i − {Ri > µ̂τAi + ν̂τ}

)∣∣∣∣∣∣∣
=

1
n

sup
τ

∣∣∣(1 − τ)AT
1 − EA1(1 − τ)n

∣∣∣ +
1
n

sup
τ

∣∣∣∣∣∣∣∑i∈Mτ

(Ai − EAi)
(
bτ,i − {Ri > µ̂τAi + ν̂τ}

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣1n ∑
i≤n

(Ai − EAi)

∣∣∣∣∣∣∣ +
p
n

max
i≤n
|Ai − EAi|.

If Ai has finite second moment, the above is clearly of order Op(1/
√

n). If we have in

addition that Ai − EAi ∼ SubG(σ), then |
∑

i(Ai − EAi)/n| ∼ SubG(σ/
√

n). For all t > 0,

P


∣∣∣∣∣∣∣1n ∑

i≤n

(Ai − EAi)

∣∣∣∣∣∣∣ > t
4

 ≤ 2 exp
(
−

nt2

32σ2

)
.

We also have

P
{ p

n
max

i≤n
|Ai − EAi| >

t
4

}
≤ nP

{
|A1 − EA1| >

tn
4p

}
≤ 2 exp

(
−

n2t2

32σ2 p2 + log n
)
.
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Hence

P

{
sup
τ

|CovF (a, {y > q̃τ(a, x)})| > t
}

≤P

{
sup
µ,ν∈R

∣∣∣∣(WA−EA(µ, ν) −WA−EA(µ, ν)
)∣∣∣∣ > t

2

}
+ P


∣∣∣∣∣∣∣1n ∑

i≤n

(Ai − EAi)

∣∣∣∣∣∣∣ > t
4

 + P
{ p

n
max

i≤n
|Ai − EAi| >

t
4

}
≤C

(
exp

(
−C2nt2

)
+ exp

(
−C3
√

n
))

+ 2 exp
(
−

nt2

32σ2

)
+ 2 exp

(
−

n2t2

32σ2 p2 + log n
)

≤C
(
exp

(
−C′2nt2

)
+ exp

(
−C3
√

n
)

+ n exp
(
−C4n2t2

))
.

That concludes the proof of (3.8). The proof of (3.7) is similar. Simply note that

sup
τ

|EF{y > q̃τ(a, x)} − (1 − τ)|

= sup
τ

∣∣∣W1(̂µτ, ν̂τ) − (1 − τ)
∣∣∣

≤ sup
µ,ν

∣∣∣W1(µ, ν) −W1(µ, ν)
∣∣∣ + sup

τ

∣∣∣∣∣∣∣1n ∑
i∈Mτ

(
bτ,i − 1{Ri > µ̂τAi + ν̂τ}

)∣∣∣∣∣∣∣
≤ sup

µ,ν

∣∣∣W1(µ, ν) −W1(µ, ν)
∣∣∣ +

p
n

because |Mτ| ≤ p. Apply Lemma 3.1 with

F = { f : (a, r) 7→ 1{r > µa + ν} : µ, ν ∈ Q}, and F ≡ 1.

The subgraph of F also forms a VC set via similar analysis. Lemma 3.1 implies that if

t ≥ C1/
√

n for large enough C1

P

{
sup
µ,ν

∣∣∣W1(µ, ν) −W1(µ, ν)
∣∣∣ > t

}
≤ 4 exp

− ( √
nt

C2
− 1

)2 + P

{
2 >

C1

C2

}
.

The second term is 0 for C1 > 2C2, and the desired inequality (3.7) immediately follows. �
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Proof of Theorem 3.2. Suppose µ∗τ, ν
∗
τ ∈ arg minµ,ν∈R R(̂qτ + µA + ν). There exists some

finite constant K for which

(µ∗τ, ν
∗
τ) ∈ BK = {(µ, ν) : max(|µ|, |ν|) ≤ K}.

Invoke Lemma 3.1 with

F = { f : (a, r) 7→ ρτ(r − µa − ν) : µ, ν ∈ Q} .

The subgraph of F forms a VC class of sets, and on the compact set BK , we have | f | ≤ F

where F(a, r) = |r| + K|a| + K has bounded second moment. By Lemma 3.1,

sup
(µ,ν)∈B2K

∣∣∣∣∣∣∣1n ∑
i≤n

(ρτ(Ri − µAi − ν) − Eρτ(Ri − µAi − ν))

∣∣∣∣∣∣∣ = Op(1/
√

n). (3.17)

Use continuity of ρτ to deduce existence of some δ > 0 for which

Eρτ(R1 − µA1 − ν) > Eρτ(R1 − µ
∗
τA1 − ν

∗
τ) + 2δ ∀(µ, ν) ∈ ∂B2K .

Use (3.17) to deduce that with probability 1 − o(1),

min
(µ,ν)∈∂B2K

1
n

∑
i≤n

ρτ(Ri − µAi − ν) > Eρτ(R1 − µ
∗A1 − ν

∗) + δ >
1
n

∑
i≤n

ρτ(Ri − µ
∗
τAi − ν

∗
τ).

By convexity of ρτ, the minimizers µ̂τ, ν̂τ must appear with B2K . Recall that µ̂τ and ν̂τ are

obtained by running quantile regression of R against A on the training set, so we have

1
n

∑
i≤n

ρτ(Ri − µ̂τAi − ν̂τ) ≤
1
n

∑
i≤n

ρτ(Ri − µ
∗
τAi − ν

∗
τ). (3.18)
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A few applications of the triangle inequality yields

R(̃qτ) − R(̃q∗τ)

≤
1
n

∑
i≤n

ρτ(Ri − µ̂τAi − ν̂τ) −
1
n

∑
i≤n

ρτ(Ri − µ
∗
τAi − ν

∗
τ)

+ 2 sup
(µ,ν)∈B2K

∣∣∣∣∣∣∣1n ∑
i≤n

(ρτ(Ri − µAi − ν) − Eρτ(Ri − µAi − ν))

∣∣∣∣∣∣∣
≤0 + Op(1/

√
n)

by (3.18) and (3.17) . �

3.6 Experiments

3.6.1 Experiments on synthetic data

In this section we show experiments on synthetic data that verify our theoretical claims.

1 The experiment is carried out in N = 10,000 independent repeated trials. In each trial,

n = 1,000 data points (X, A,Y) ∈ Rp × {0, 1} × R are generated independently as follows:

• Let p = 20. Generate X from the multivariate distribution with correlated attributes:

X ∼ N(0,Σ), where the the covariance matrix Σ ∈ Rp×p takes value 1 for diagonal

entries and 0.3 for off-diagonal entries.

• The protected attribute A depends on X through a logistic model: A | X ∼ Bernoulli(b)

with

b = exp
(
XTγ

)
/
(
1 + exp

(
XTγ

))
.

• Given A, X, generate Y from a heteroscedastic model: Y | A, X ∼ N
(
XTβ + µA, (XTη)2

)
.

1Code and data for all experiments are available online at https://drive.google.com/file/d/
1Ibaq5VWaAE4539hec4-UdIOgPsNv0x_t/view?usp=sharing
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The parameters β, γ, η are all generated independently fromN(0, Ip) and stay fixed through-

out all trials. The coefficient µ is set to be 3.

In each of the N trials, conditional quantile estimators are trained on a training set of

size n/2 and evaluated on the remaining size n/2 held out set. We train three sets of quantile

estimators at τ = 0.5:

1. Full quantile regression of Y on A and X.

2. Quantile regression of Y on X only.

3. Take the estimator from procedure 2 and correct it with the method described in

Section 3.3.

The average residuals Y − q̂τ(X, A) are then evaluated on the test set for the A = 0 and

A = 1 subpopulations. In Figure 3.1 we display the histograms of these average residuals

across all N trials for the quantile regression estimator on X (3.1a) and the corrected

estimator (3.1b). In the simulation we are running, A is positively correlated with the

response Y . Therefore when A is excluded from the regression, the quantile estimator

underestimates when A = 1 and overestimates when A = 0. That is why we observe

different residual distributions for the two subpopulations. This effect is removed once we

apply the correction procedure, as shown in Figure 3.1c.

We also test whether our correction procedure corrects the unbalanced effective quantiles

of an unfair initializer. In each trial we measure the fairness level of an estimator q̂τ by the

absolute difference |̂τ1 − τ̂0| between the effective quantiles of the two subpopulations on a

heldout set S , where τ̂a is defined as in (3.4).

We established in previous sections that quantile regression excluding attribute A is in

general not fair with respect to A. A histogram of the fairness measure obtained from this

procedure is shown in Figure 3.1c (salmon). Plotted together are the fairness measures

after the correction procedure (light blue). For comparison we also include the histogram
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Figure 3.1: From left to right: (a): histograms of average residuals for quantile regression
of Y on X only; (b): histograms of average residuals for the corrected quantile estimators;
(c): histograms and density estimates of the fairness measures obtained by running quantile
regression on X, before (salmon) and after (light blue) the adjustment procedure. The
histogram from the full regression (black) serves as a benchmark for comparison.

obtained from the full regression (black). Note that the full regression has the “unfair”

advantage of having access to all observations of A. Figure 3.1c shows that the correction

procedure pulls the fairness measure to a level comparable to that of a full regression, which

as we argued in Section 3.4, produces
√

n-fair estimators.

3.6.2 Birthweight data analysis

The birth weight dataset from Abrevaya (2001), which is analyzed by Koenker and Hallock

(2001), includes the weights of 198,377 newborn babies, and other attributes of the babies

and their mothers, such as the baby’s gender, whether or not the mother is married, and

the mother’s age. One of the attributes includes information about the race of the mother,

which we treat as the protected attribute A. The variable A is binary—black (A = 1) or not

black (A = 0). The birth weight is reported in grams. The other attributes include education

of the mother, prenatal medical care, an indicator of whether the mother smoked during

pregnancy, and the mother’s reported weight gain during pregnancy.

Figure 3.2 shows the coefficients β̂τ obtained by fitting a linear quantile regression

model, regressing birth weight on all other attributes. The model is fit two ways, either
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Figure 3.2: Quantile regression coefficients for birth data. The quantile τ runs along
horizontal axis; curves are the coefficients β̂τ; unit is grams. Solid/salmon: race is included
in the model; dashed/blue: race excluded. When race is excluded, the strongly correlated
variable “married” can be seen as serving as a kind of proxy.

including the protected race variable A (solid, salmon confidence bands), or excluding

A (long dashed, light blue confidence bands). The top-right figure shows that babies of

black mothers weigh less on average, especially near the lower quantiles where they weigh

nearly 300 grams less compared to babies of nonblack mothers. A description of other

aspects of this linear model is given by Koenker and Hallock (2001). A striking aspect

of the plots is the disparity between birth weights of infants born to black and nonblack

mothers, especially at the left tail of the distribution. In particular, at the 5th percentile

of the conditional distribution, the difference is more than 300 grams. Just as striking is

the observation that when the race attribute A is excluded from the model, the variable

“married,” with which it has a strong negative correlation, effectively serves as a proxy, as

seen by the upward shift in its regression coefficients. However, this and the other variables

do not completely account for race, and as a result the model overestimates the weights of

infants born to black mothers, particularly at the lower quantiles.
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To correct for the unfairness of q̂τ, we apply the correction procedure described in

Section 3.3. For the target quantile τ = 20%, the corrected estimator q̃τ achieves effective

quantiles 20.4% for the black population and 20.1% for the nonblack population. Table 3.1

(left) shows the effective quantiles at a variety of quantile levels. We see that the correction

procedure consistently pulls the effective quantiles for both subpopulations closer to the

target quantiles.

target 5 25 50 75 95
τ̂0(before) 4.42 23.14 47.87 73.12 94.50
τ̂1(before) 7.91 33.80 60.02 82.46 96.90
τ̂0(after) 5.03 25.01 49.77 74.61 94.79
τ̂1(after) 5.02 24.02 49.95 74.62 94.99

Table 3.1: The effective quantiles before and after correction.

For 2000 randomly selected individuals from the test set, Figure 3.3 shows their observed

birth weights plotted against the conditional quantile estimation at τ = 20% before (left) and

after (right) the correction. The dashed line is the identity. When A is not included in the

quantile regression, the conditional quantiles for the black subpopulation are overestimated.

Our procedure achieves fairness correction by shifting the estimates for the Ai = 1 data

points smaller (to the left) and shifting the Ai = 0 data points larger (to the right). After the

correction, the proportion of data points that satisfy Y ≤ q̃τ are close to the target 20% for

both subpopulations.

3.7 Discussion

In this chapter we have studied the effects of excluding a distinguished attribute from

quantile regression estimates, together with procedures to adjust for the bias in these

estimates through post-processing. The linear programming basis for quantile regression

leads to properties and analyses that complement what has appeared previously in the
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Figure 3.3: scatter plots of observed birth weights against estimated 20% conditional
quantiles over the test set, before and after adjustment.

fairness literature. Several extensions of the work presented here should be addressed

in future work. For example, the generality of the concentration result of Lemma 3.1

could allow the extension of our results to multiple attributes of different types. In the

fairness analysis in Section 3.5 we used a linear quantile regression in the adjustment

step, which allows us to more easily leverage previous statistical analyses on quantile rank

scores (Gutenbrunner and Jurečková (1992)). Nonparametric methods would be another

interesting direction to explore.

The birth data studied here has been instrumental in developing our thinking on fairness

for quantile regression. It will be interesting to investigate the ideas introduced here for

other data sets. If the tail behaviors, including outliers, of the conditional distributions for a

set of subpopulations are very different, and the identification of those subpopulations is

subject to privacy restrictions or other constraints that do not reveal them in the data, the

issue of bias in estimation and decision making will come into play.
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Chapter 4

Consistent recovery threshold of hidden
nearest neighbor graphs

Joint work with Prof. Jian Ding, Prof. Yihong Wu and
Prof. Jiaming Xu

Abstract

In this chapter we study the problem of recovering a hidden 2k-NN graph from its noisy

observation. We give sufficient conditions under which exact recovery is possible and is

achieved by the maximum likelihood estimator. We also give a matching information-

theoretic lower bound. The exact recovery threshold we obtain is sharp with provable

matching constants.

4.1 Introduction

Many datasets call for network models that demonstrate both strong local links and weak

global links. One abstraction of such real life models is to combine weak signals on a

complete graph with strong signals on a nearest neighbor (NN) graph.
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Definition 4.1 (2k-NN graph). A simple undirected graph on the vertex set [n] is called

a 2k-NN graph if there exists a permutation σ on [n], such that i ∼ j if and only if

min{|σ(i) − σ( j)|, n − |σ(i) − σ( j)|} ≤ k.

In other words, each 2k-NN graph is isomorphic to the usual circulant graph where

n vertices are equally spaced on a circle and each pair of vertices within distance k are

connected (see Fig. 4.1a, 4.1c). A 2k-NN graph can be constructed as follows: first,

construct a Hamiltonian cycle (σ(1), σ(2), . . . , σ(n), σ(1)), then connect pairs of vertices

that are at distance at most k.

(a)
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Figure 4.1: Examples of 2k-NN graphs for n = 8 and k = 2. (a): the 2k-NN graph charac-
terized by the Hamiltonian cycle (1, 2, 3, 4, 5, 6, 7, 8, 1); (c): the 2k-NN graph characterized
by the Hamiltonian cycle (1, 4, 3, 5, 6, 8, 7, 2, 1); (b), (d): heatmap of one realization of w
under the Hidden 2k-NN graph model with underlying 2k-NN graphs represented by (a),
(c) respectively.

In this chapter, we consider the following statistical model for weighted graphs which
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can be viewed as noisy observation of a hidden 2k-NN graph (ground truth).

Definition 4.2 (Hidden 2k-NN graph model). Let x∗ denote the adjacency vector of a

2k-NN graph on n vertices. Given probability distributions Pn and Qn, let w denote the

weighted adjacency vector of a complete weighted graph, where we’s are independently

drawn from Pn if x∗e = 1 and Qn if x∗e = 0, respectively.

Given the weighted graph w (e.g. see Fig. 4.1b, 4.1d), the goal is to infer the underlying

2k-NN graph.

When k = 1, the model simplifies to the model of hidden Hamiltonian cycle, which

was studied extensively by Bagaria et al. (2018). The application they considered arises

from Genome Scaffolding, that is, extending genome subsequences (so-called contigs)

to the whole genome by ordering them according to their positions on the genome. The

data available for genome scaffolding is the linkage strength between contigs measured by

randomly sampled Hi-C reads Lieberman-Aiden et al. (2009); Putnam et al. (2016) , where

one expects to see a larger count of Hi-C reads when two contigs are close on the genome.

In order to infer the ordering of the contigs, the authors of Bagaria et al. (2018) studied

the hidden Hamiltonian cycle model, where each node of the random graph is a contig,

the hidden Hamiltonian cycle corresponds to the underlying true ordering of contigs, and

the edge weights represent the counts of the Hi-C reads linking the contigs. This hidden

Hamiltonian cycle model is limited by the assumption that only contigs that are adjacent

on the genome demonstrate strong signal – an elevated mean number of Hi-C reads. The

general 2k-NN graph model is a closer approximation to the real data, capturing the large

Hi-C counts observed between contigs that are nearby on the genome.

By restricting both Pn and Qn to Bernoulli distributions with corresponding success

probabilities pn > qn, we arrive at a variant of the “small-world” network model Watts and

Strogatz (1998), Newman and Watts (1999). The “small-world” model can be interpreted

as an interpolation between a ring lattice and an Erdös-Rényi random graph. It is often
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used to model the social networks that exhibit some local “neighborhood” structure as

well as small graph diameters. In particular, under the “small-world” model, if two people

in the network share a mutual friend, then they are likely to be also connected in the

random graph. In addition, if two people are uniformly drawn at random, then it is very

unlikely that there is an edge connecting them; however, they can typically reach each

other through a short path on the graph, hence the name “small-world”. The hidden graphs

may correspond to the geographical locations of people in the physical space, or to their

demographic characteristics in the embedded space. Beyond social networks, the hidden

graphs my unveil patterns of viral infection, or help generate word embeddings from word

co-occurrence networks. It is of interest to discover these hidden graph structures from the

“small-world” graphs.

We study the following two recovery problems.

Definition 4.3 (Exact recovery). An estimator x̂ achieves exact recovery if, as n→ ∞,

inf
x∗
P
{
x̂ , x∗

}
= o(1),

where the infimum is over all adjacency vectors of 2k-NN graphs on [n], and the expected

value is taken under the 2k-NN graph model where the underlying 2k-NN graph corresponds

to x∗.

We aim to find the weakest conditions on Pn and Qn for exact recovery to be possible

in the k = no(1) regime. In the context of the “small-world” network, the problem of weak

recovery was previously addressed in Cai et al. (2017). They specify the model with

Pn = Bernoulli
(
1 − β

(
1 − β

2k
n − 1

))
; Qn = Bernoulli

(
β

2k
n − 1

)
,

which can be interpreted as a rewiring model where one starts from a 2k-NN graph. Each

edges is removed independently with probability β. Each edge on the complete graph is
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then connected independently with probability β k
n−1 .

It is shown in Cai et al. (2017) that a necessary condition to achieve both reliable testing

and exact recovery is (1 − β) = o
(√

log n
n ∨

log n
k

1
log n log n

k2

)
. When k = no(1), this condition

translates to 1 − β = o(1/k). Compare with our exact recovery threshold β = o(1/
√

n). We

also show that this condition is sufficient for exact recovery.

We investigate the necessary and the sufficient conditions for exact recovery under

the more general hidden 2k-NN graph model. The conditions we obtain are sharp, in

the sense that the boundary between the possibility and impossibility regions is precisely

characterized, with exact constant coefficients. The proof techniques we use are consider-

ably different from Cai et al. (2017). We show that, roughly speaking, the necessary and

sufficient condition for exact recovery to be possible is

lim inf
n→∞

2αn

log n
> 1

, where αn is the Rényi divergence between Pn and Qn or order 1/2:

αn = −2 log
∫ √

dPndQn.

The following section contains the exact statements of proofs of our result.

4.2 Exact recovery

The maximum likelihood estimator (MLE) for the hidden 2k-NN graph problem is equiva-

lent to finding the max-weighted 2k-NN graph with weights given by the log likelihood

ratios. Specifically, assuming that dPn/dQn is well-defined, for each edge e ∈ [
(

n
2

)
], let

Le = log dPn
dQn

(we). Then the MLE is the solution to the following combinatorial optimization
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problem:

x̂ML = arg max
x∈X
〈L, x〉 (4.1)

where the feasible set X ⊂ {0, 1}(
n

[2]) is the collection of adjacency vectors of all 2k-NN

graphs on [n]. Note that in the Poisson or Gaussian model where the log likelihood ratio is

an affine function of the edge weight, we can simply take L to be w itself.

Assumption 4.1. [c.f. (Bagaria et al., 2018, Lemma 1)]

sup
τ∈R

(
logP {Y1 ≥ τ} + logP {X1 ≤ τ}

)
≥ −(1 + o(1))αn + o(log n).

The authors of Bagaria et al. (2018) remarked that 4.1 is very general and is fulfilled

when the weight distributions are either Poisson, Gaussian or Bernoulli.

Theorem 4.1. Let k ≥ 2. Suppose αn −
1
2(log n + 17 log k) → ∞. Then P

{
x̂ML , x∗

}
→ 0.

In particular, if k = no(1) and

lim inf
n→∞

2αn

log n
> 1,

the MLE achieves exact recovery.

Conversely, assume that k < n/12 and 4.1 holds. If exact recovery is possible, then

lim inf
n→∞

2αn

log n
≥ 1.

4.2.1 Suboptimality of two algorithms

So far no polynomial-time algorithm is known to achieve the sharp threshold lim infn→∞
2αn
log n =

1. We investigated these two natural relaxations of maximum likelihood to find an

efficient algorithm. However to achieve exact recovery both algorithms require that

lim infn→∞
αn

log n > 1, a condition stronger than in Theorem 4.1.
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1. The 2k-factor ILP amounts to the following optimization problem:

x̂2kF = arg max
x
〈L, x〉

s.t.
∑
v∼u

x(u,v) = 2k, ∀u,

xe ∈ {0, 1}, ∀e.

To see why the 2k-factor ILP does not achieve the sharp threshold, consider Pn =

N(µn, 1) and Qn = N(0, 1). In this case Le = µnwe−µ
2
n/2, hence we could equivalently

maximize 〈w, x〉. The condition lim inf 2αn
log n > 1 translates to lim inf µn√

2 log n
> 1.

Assume that x∗ is characterized by the identity permutation σ∗(i) ≡ i and consider

alternative solutions of this form: fix two vertices i, j for which dx∗(i, j) > k, define

x(i, j) to be the solution that removes the edges (i, i + 1) and ( j, j + 1) and adds the

edges (i, j) and (i + 1, j + 1). That is, x(i, j)(i, i + 1) = x(i, j)( j, j + 1) = 0, x(i, j)(i, j) =

x(i, j)(i + 1, j + 1) = 1 and x(i, j) agrees with x∗ in all other positions. There are O(n2)

such alternative solutions and they are close to being mutually independent. For

each pair (i, j), we have 〈w, x(i, j) − x∗〉 ∼ N(−2µn, 4). Unless lim inf µn√
4 log n

> 1,

with high probability at least one of the feasible solutions of the 2k-factor ILP is

such that 〈w, x〉 > 〈w, x∗〉. From the analysis in (Bagaria et al., 2018, Section 4.2),

lim inf µn√
4 log n

> 1 is sufficient for the 2k-factor ILP to achieve exact recovery.

2. The LP relaxation yields from relaxing the integer constraint in the 2k-factor ILP to

xe ∈ [0, 1]. By the same argument as the ILP, the LP relaxation cannot consistently

recover x∗ if lim inf µn√
4 log n

< 1. From similar analysis in (Bagaria et al., 2018,

Section 5), the LP relaxation achieves exact recovery when lim inf µn√
4 log n

> 1.
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4.2.2 Proof of correctness for MLE

To analyze the MLE, we first introduce the notion of difference graph, which encodes the

difference between a proposed 2k-NN graph and the ground truth. Given x, x∗ ∈ {0, 1}(
n
2), let

G = G(x) be a bi-colored simple graph on [n] whose adjacency vector is x − x∗ ∈ {0,±1}(
n
2),

in the sense that each pair (i, j) is connected by a blue (resp. red) edge if xi j − x∗i j = 1

(resp. −1). See Figure 4.2 on page 81 for an example.

Figure 4.2: An example for a difference graph G. Here G is obtained by letting x∗ (resp. x)
be the 2k-NN graph in Fig. 4.1a (resp. 4.1c), and then taking the difference x − x∗.

Therefore, red edges in G(x) are true edges in x∗ that are missed by the proposed

solution x, and blue edges correspond to spurious edges that are absent in the ground truth.

A key property of difference graphs is the following: Since 2k-NN graphs are 2k-regular,

the difference graph G is balanced, in the sense that for each vertex, its red degree (the

number of incident red edges) coincides with its blue degree. Consequently, G has equal

number of red edges and blue edges, and the number of red (or blue) edges measures the

closeness of x to the truth x∗. Denote

X∆ = {x ∈ X : d(x, x∗) = 2∆} =
{
x ∈ X : G(x) contains exactly ∆ red edges

}
. (4.2)

In particular, {X∆ : ∆ ≥ 0} partitions the feasible set X. The crux of the proof lies on the

following combinatorial lemma (proved in Section 4.2.4) bounding the cardinality of X∆:
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Lemma 4.1. There exist an absolute constant C such that for any ∆ ≥ 0 and any 1 ≤ k ≤ n,

|X∆| ≤ 2
(
Ck17n

)∆/2
(4.3)

Assuming 4.1, the proof of the correctness of MLE follows from the union bound. First

of all,

P {∃x ∈ X : 〈L, x − x∗〉 > 0} ≤
∑
∆≥1

P {∃x ∈ X∆ : 〈L, x − x∗〉 > 0} . (4.4)

Recall that Le = log(dPn/dQn)(Ae). Hence for each x ∈ X∆, the law of 〈L, x − x∗〉 only

depends on ∆, which can be represented as follows:

〈L, x − x∗〉 D=
∑
i≤∆

Yi −
∑
i≤∆

Xi,

where X1, . . . , X∆ are i.i.d. copies of log(dPn/dQn) under Pn; Y1, . . . ,Y∆ are i.i.d. copies of

log(dPn/dQn) under Qn, and D= denotes equality in distribution. Applying Chernoff’s bound

yields

P

∑
i≤∆

Yi −
∑
i≤∆

Xi > 0

 ≤ inf
λ>0

exp
(
∆

(
ψQ(λ) + ψP(−λ)

))
,

where ψP, ψQ are the log-moment generating functions of log(dPn/dQn) under Pn and Qn

respectively. Note that

ψP(−λ) = log
∫ (

dPn

dQn
(x)

)−λ
Pn(dx) = log

∫ (
dPn

dQn
(x)

)1−λ

Qn(dx) = ψQ(1 − λ).

Choosing λ = 1/2 yields:

P {〈L, x − x∗〉 > 0} = P

∑
i≤∆

Yi −
∑
i≤∆

Xi > 0

 ≤ exp
(
2∆ψQ

(
1
2

))
= exp (−αn∆) . (4.5)
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Combining (4.3) and (4.5) and applying the union bound, we obtain

∑
x∈X∆

P {〈L, x − x∗〉 > 0} ≤ 2 exp (−∆κn) ,

where κn , αn −
log(Ck17n)

2 → ∞ by assumption. Finally, from (4.4) we get

P {∃x ∈ X : 〈L, x − x∗〉 > 0} ≤
∑
∆≥1

2 exp (−∆κn) =
2 exp(−2κn)
1 − exp(−κn)

n→∞
−−−→ 0,

4.2.3 Information-theoretic lower bound

For the purpose of lower bound, consider the Bayesian setting where x∗ is drawn uniformly

at random from the set X of all 2k-NN graphs. Then MLE maximizes the probability of

success, which, by definition, can be written as follows:

P
{
x̂ML = x∗

}
= P {〈L, x − x∗〉 < 0, ∀x , x∗} .

It is difficult to work with the intersection of dependent events. The proof strategy is to

select a subset of feasible solutions for which the events 〈L, x − x∗〉 < 0 are mutually

independent. We select x that are of the following form.

For the ground truth x∗, assume WLOG that σ∗ is the identity permutation. Define x(i)

to be solution that corresponds to σ, with σ(i) = i + 1, σ(i + 1) = i, and σ = σ∗ everywhere

else. It is easy to see that the difference graph Gx(i) contains four edges: (see Figure 4.3 on

page 84)

red edges: (i − k, i), (i + 1, i + k + 1);

blue edges: (i − k, i + 1), (i, i + k + 1).
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... ...... ...

Figure 4.3: The difference graph G(x(i)).

For two feasible solutions x(i) and x( j) wth k + 1 ≤ i ≤ j ≤ n − k, the edges sets E (Gx(i))

and E (Gx( j)) intersect if and only if j − i ∈ {0, k, k + 1}. We can avoid proposing such pairs

of (i, j) by dividing the x∗ cycle into blocks of 3k, each divided evenly into sections of

length k, and only propose x(i) whose index i lies in the middle section of a block. Define

D = {k + 1, k + 2, . . . , 2k, 4k + 1, . . . , 5k, . . . , 3k(bn/3kc − 1) + k + 1, . . . , 3k(bn/3kc − 1) + 2k} .

Each element in D corresponds to a solution x with 4 edges in the difference graph and

none of these edges would appear in the edge set of the difference graph of another solution

in D. That means all elements of
{
〈L, x(i) − x∗〉 : i ∈ D

}
are mutually independent.

For each i ∈ D, we have

P{〈L, x(i) − x∗〉 < 0}

=P {L(i − k, i + 1) + L(i, i + k + 1) − L(i − k, i) − L(i + 1, i + k + 1) < 0}

=P {Y1 + Y2 − X1 − X2 < 0} ,

where X1, X2 are independent copies of log(dPn/dQn) under Pn, and Y1, Y2 are independent

copies of log(dPn/dQn) under Qn. Therefore

P {〈L, x − x∗〉 < 0, ∀x , x∗}

≤P
{
〈L, x(i) − x∗〉 < 0 ∀i ∈ D

}
= (P {Y1 + Y2 − X1 − X2 < 0})|D|

≤ exp (−|D|P {Y1 + Y2 − X1 − X2 ≥ 0}) . (4.6)
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From the mutual independence of X1, X2, Y1, Y2,

logP {Y1 + Y2 − X1 − X2 ≥ 0} ≥ 2 sup
τ∈R

(
logP {Y1 ≥ τ} + logP {X1 ≤ τ}

)
.

Recall that (4.6) is an upper bound for P{x̂ML = x∗}. The success of MLE must require that

log |D| + 2 sup
τ∈R

(
logP {Y1 ≥ τ} + logP {X1 ≤ τ}

)
→ −∞.

On one hand, by 4.1,

sup
τ∈R

(
logP {Y1 ≥ τ} + logP {X1 ≤ τ}

)
≥ −(1 + o(1))αn + o(log n).

On the other hand, from the way |D| was constructed, we also have |D| ≥ n/3 − k ≥ n/4

under the assumption k < n/12. Hence

log n − log 4 − 2
(
(1 + o(1))αn + o(log n)

)
= (1 + o(1))(log n − 2αn) − log 4→ −∞.

Conclude that lim infn→∞
2αn
log n ≥ 1 is necessary for P{x̂ML = x∗} → 1.

4.2.4 Counting difference graphs

To prove 4.1, we begin with some notations. For a 2k-NN graph x, let Ered(x) (resp. Eblue(x))

be the set of red (resp. blue) edges in G(x). The proof strategy is to first enumerate

Ered(∆) = {Ered(x) : x ∈ X∆} . (Lemma 4.3)

Then for each Ered ∈ Ered(∆), enumerate

X∆(Ered) = {x ∈ X∆ : Ered(x) = Ered} .
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which contains all sets of blue edges that are compatible with Ered (4.4). This completely

specifies the difference graph G(x), and hence the 2k-NN graph x.

For a given 2k-NN graph x associated with the permutation σ, let Nx(i) denote the

set of neighbors of i in x. Let dx(i, j) = min{|σ(i) − σ( j)|, n − |σ(i) − σ( j)|}, which is the

distance between i and j on the Hamiltonian cycle defined by σ. It is easy to check that

dx is a well-defined metric on [n]. For the hidden 2k-graph x∗, define Nx∗(·) and dx∗(·, ·)

accordingly.

Definition 4.4. In the 2k-NN graph x∗, define the distance between two edges e = (i, ĩ) and

f = ( j, j̃) as

d(e, f ) = min{dx∗(i, j), dx∗(i, j̃), dx∗ (̃i, j), dx∗ (̃i, j̃)}.

We say e and f are nearby if d(e, f ) ≤ 2k.

Since a 2k-NN graph has a total of kn edges, the cardinality of Ered(∆) is at most
(

kn
∆

)
.

The following lemma provides additional structural information for elements of Ered(∆)

that allows us to improve this trivial bound.

Lemma 4.2. For each red edge e in the difference graph G, there exists a nearby red edge

f distinct from e in G.

Proof. We divide the proof into two cases according to the degree of one of the endpoints

of e = (i, ĩ), say i, in the difference graph.

1. The degree of i is strictly larger than 2. Then by balancedness the number of red

edges attached to i is at least 2. Other than (i, ĩ), there must exist at least one other

red edge (i, i′). By definition

d((i, ĩ), (i, i′)) ≤ dx∗(i, i) = 0 < 2k.

That is, (i, i′) and (i, ĩ) are nearby. See Figure 4.4a on page 87.
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2. The degree of i is equal to 2. Then i is only attached to one red edge and one blue

edge in G. Denote the blue edge as (i, j). Since the only red edge attached to i is

(i, ĩ), we have that in the proposed solution x, the vertex i is connected to all its old

neighbors in x∗ except ĩ. Deduce that Nx(i) = Nx∗(i) ∪ { j}\{̃i}. As a result, out of the

two vertices j1, j2 that are right next to j in the x cycle (dx( j, j1) = dx( j, j2) = 1), at

least one of them is an old neighbor of i. WLOG say j1 ∈ Nx∗(i). Consider these

cases:

(a) dx∗( j, j1) ≤ k. By triangle inequality dx∗( j, i) ≤ dx∗( j, j1) + dx∗(i, j1) ≤ 2k.

Because G is a balanced graph, there is at least one red edge ( j, j̃) attached to j,

and

d((i, ĩ), ( j, j̃)) ≤ dx∗( j, i) ≤ 2k.

In other words, ( j, j̃) and (i, ĩ) are nearby. See Figure 4.4b on page 87.

(b) dx∗( j, j1) > k. In this case ( j, j1) appears in the difference graph as a blue edge.

Therefore j1 is one of the vertices in G and attached to at least one red edge

( j1, j̃1). Recall that j1 ∈ Nx∗(i). Therefore

d((i, ĩ), ( j1, j̃1)) ≤ dx∗(i, j1) ≤ k.

In other words, ( j1, j̃1) and (i, ĩ) are nearby. See Figure 4.4c on page 87.

(a) Case 1 (b) Case 2a (c) Case 2b

Figure 4.4: Three cases considered in the proof of 4.2.
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The following lemma gives an upper bound for the size of Ered(∆) and it is a direct

consequence of 4.2.

Lemma 4.3.

|Ered(∆)| ≤ (96k2)∆

(
kn
b∆/2c

)
.

Proof. To each member Ered of Ered(∆), we associate an undirected graph G̃(Ered) with

vertex set Ered and edge set E(Ered), such that for e, f ∈ Ered, (e, f ) ∈ E(Ered) if e and f are

nearby per 4.4. It suffices to enumerate all Ered for which G̃(Ered) is compliant with the

structural property enforced by 4.2. Our enumeration scheme is as follows:

1. Fix m ∈ [∆] to be the number of connected components of G̃(Ered). Select {e1, . . . , em}

from the edge set of x∗. Since x∗ is a 2k-NN graph with kn edges, there are
(

kn
m

)
ways

to select this set.

2. Let ∆1, . . . , ∆m be the sizes of the connected components C1, . . . ,Cm of G̃(Ered).

Since ∆i ≥ 1 and
∑

∆i = ∆, the total number of such (∆i) sequences is
(

∆−1
m−1

)
, as each

sequence can be viewed as the result of replacing m − 1 of the “+” symbols with “,”

in the expression ∆ = 1 + 1 + . . . + 1 + 1.

3. For each Ci, there is at least one spanning tree Ti. Since Ci and Ti share the same

vertex set, it suffices to enumerate Ti. First enumerate the isomorphism class of Ti,

that is, count the total number of unlabeled rooted trees with of ∆i vertices. From Otter

(1948), there are at most 3∆i such unlabeled trees.

4. For i = 1, . . . ,m, let ei be the root of Ti. Enumerate the ways to label the rest of tree

Ti. To start, label the vertices on the first layer of Ti, that is, the children of ei. A

red edge f being a child of ei on Ti means f and ei are nearby, limiting the number

of labels to at most 16k2. To see why, note that at least one endpoint of f is of dx∗
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distance at most 2k from one of the endpoints of ei. No more than 8k vertices fit this

description. The other endpoint of f can then only choose from 2k vertices because

f is in the edge set of x∗.

The remaining layers of Ti can be labeled similarly, with at most 16k2 possibilities to

label each vertex. In total there are at most (16k2)∆i−1 to label Ti.

This enumeration scheme accounts for all members of Ered(∆). By 4.2, G̃ does not

contain singletons, i.e. ∆i ≥ 2 for all i. Thus m ≤ b∆/2c, and

|Ered(∆)| ≤
∑

m≤b∆/2c

(
kn
m

)(
∆ − 1
m − 1

)∏
i≤m

3∆i(16k2)∆i−1

≤

(
kn
b∆/2c

)
2∆−13∆(16k2)∆ ≤ (96k2)∆

(
kn
b∆/2c

)
.

�

Lemma 4.4. For each Ered ∈ Ered(∆),

|X∆(Ered)| ≤ 2(32k3)2∆∆∆/k.

Proof. For a given permutation σ, let x(σ) denote the corresponding 2k-NN graph. Here-

after the dependence on σ is suppressed when it is clear from the context.

It suffices to enumerate all σ such that Ered(x(σ)) = Ered. WLOG assume that σ(1) = 1

and for the ground truth x∗, σ∗(i) ≡ i. The following is the outline of our enumeration

scheme:

1. Enumerate all possibilities for the setNx(1) = {σ(n−k +1), . . . , σ(n), σ(2), . . . , σ(k +

1)}.

2. With Nx(1) determined, enumerate all possibilities for the values of (σ(n − k +

1), . . . , σ(n), σ(2), . . . , σ(k + 1)).
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3. For i from 1 to n− 2k − 1, enumerate σ(i + k + 1) sequentially, assuming at step i that

σ were determined from σ(n − k + 1) up to σ(i + k).

Now we give the details on how cardinality bounds are obtained for each step of the

enumeration scheme.

Step 1: Decompose Nx(1) according to the set of true neighbors and false neighbors.

The set of true neighborsNx(1)∩Nx∗(1) is determined by the set of red edges in G. Indeed,

this set consists of all members i ∈ Nx∗(1) for which (1, i) is not a red edge.

The set Nx(1)\Nx∗(1) cannot be read directly from the set of red edges. However we

know all members of this set must be connected to 1 via a blue edge. HenceNx(1)\Nx∗(1) is

a subset ofV(G), the vertex set of G. In additionV(G) is known and |V(G)| ≤ 2∆. In fact

V(G) is the vertex set of the subgraph of G induced by the ∆ red edges, from balancedness

of G. The number of possibilities for Nx(1)\Nx∗(1) does not exceed the number of subsets

ofV(G), which is at most 22∆.

Step 2: With the set Nx(1) determined, we next enumerate all ways to place the

elements in Nx(1) are on the cycle represented by σ. That is, we specify the sequence

(σ(n− k + 1), . . . , σ(n), σ(2), . . . , σ(k + 1)), or equivalently, specify σ−1( j) for all j ∈ Nx(1).

Start withNx(1)∩V(G)C. We claim that for all j, j1, j2 in this set, dx(1, j) and dx( j1, j2)

are completely determined byNx(1). Therefore the sequence (σ−1( j) : j ∈ Nx(1)∩V(G)C)

is determined up to a symmetric flip around 1, contributing a factor of 2.

To see why dx(1, j) is determined from Nx(1), note that for all j ∈ Nx(1),

dx(1, j) = 2k − 1 − |Nx(1) ∩ Nx( j)| .

Both Nx(1) and Nx( j) are determined. The latter is because j ∈ V(G)C, thus Nx( j) =

Nx∗( j).
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Similarly Nx( j1) = Nx∗( j1) and Nx( j2) = Nx∗( j2), which allows to determine dx( j1, j2):

dx( j1, j2) =


2k − 1 − |Nx ( j1) ∩ Nx ( j2)| if j2 ∈ Nx ( j1) ;

2k + 1 − |Nx ( j1) ∩ Nx ( j2)| otherwise.

Next handle all j ∈ Nx(1) ∩ V(G). Note that σ−1( j) ∈ {n − k + 1, . . . , n, 2, . . . , k + 1}

because j ∈ Nx(1). Among those 2k possible values, some are already taken by {σ−1( j) :

j ∈ Nx(1) ∩V(G)C}, leaving |Nx(1) ∩V(G)| values to which all j ∈ Nx(1) ∩V(G) are to

be assigned. The number of possible assignments is bounded by |Nx(1) ∩V(G)|! ≤ (2k)2∆.

The inequality is because Nx(1) = 2k andV(G) ≤ 2∆.

Overall the cardinality bound induced by step 2 is

2 · 22∆ · (2k)2∆ = 2(4k)2∆.

Step 3: In the previous two steps the values of (σ(n − k + 1), . . . , σ(k + 1)) have been

determined. Determined with that are the blue edges between members of {σ(n − k +

1), . . . , σ(k + 1)}. That is because (σ(i), σ( j)) is a blue edge if and only if dx∗(i, j) ≤ k and

dx∗(σ(i), σ( j)) > k. Denote this set of blue edges as E(0)
blue, which can be empty. Recall

that the total number of blue edges in G is ∆. If |E(0)
blue| is already ∆, then the enumeration

scheme is complete because x is completely specified by the difference graph. Otherwise

we determine the value of σ(i + k + 1) sequentially, starting from i = 1. At step i we assign

a value for σ(i + k + 1) and update the set of determined blue edges accordingly. We repeat

this process until the quota of ∆ blue edges is met.

At step i, all of σ(n − k + 1), . . . , σ(i + k) have been determined. Denote the set of blue

edges between members of {σ(n− k + 1), . . . , σ(i + k)} as E(i−1)
blue . Unless |E(i−1)

blue | = ∆, specify

σ(i + k + 1) as follows.

Discuss three cases split according to the red degree of σ(i + 1), i.e. the number of red
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edges attached to σ(i + 1). Note that one of these cases must occur or else balancedness of

G would be violated.

1. (Figure 4.5 on page 92) The red degree of σ(i+1) is zero, meaning thatNx(σ(i+1)) =

Nx∗(σ(i + 1)). At step i, all but one members of Nx(σ(i + 1)) are determined, and

σ(i+k+1) has to be the true neighbor of σ(i+1) that has not appeared in the previous

steps. Thus there is only a single choices for σ(i + k + 1).

... ...

Figure 4.5: Vertices arranged by their order on the cycle corresponding to σ. At step i of
the procedure, the values of σ(n − k + 1) to σ(i + k) are determined. The figure shows an
example of case 1: the vertex σ(i + 1) is not attached to any red edges.

2. (Figure 4.6 on page 92) The red degree of σ(i + 1) is nonzero and equals the number

of blue edges in E(i−1)
blue attached to σ(i + 1). In this case by balancedness all blue edges

attached to σ(i+1) are contained in E(i−1)
blue and therefore the edge (σ(i+1), σ(i+k+1))

does not appear in the difference graph G. That implies σ(i + k + 1) is connected to

σ(i + 1) in x∗, limiting the number of choices for σ(i + k + 1) to at most 2k.

... ...

Figure 4.6: Case 2: σ(i + 1) is attached to some red edge(s) and is already balanced at step i.
In the figure the red degree and blue degree of σ(i+1) are both 1, thus (σ(i+1), σ(i+k +1))
cannot be a blue edge.

3. (Figure 4.7 on page 93) The red degree of σ(i + 1) is nonzero and is one plus

the number of blue edges in E(i−1)
blue attached to σ(i + 1). By balancedness (σ(i +

1), σ(i + k + 1)) has to appear in G as a blue edge. In this case, either at least one of
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{(σ(i + j), σ(i + k + 1))}2≤ j≤k is not a blue edge in G, or all of {(σ(i + j), σ(i + k + 1))}2≤ j≤k

are blue edges in G. Suppose this is the t’th time case 3 happens. Let ξt encode which

of the two possibilities occurs and specify the value σ(i + k + 1) as follows:

(a) Let ξt = 0 and specifyσ(i+k+1) such that at least one of {(σ(i + j), σ(i + k + 1))}2≤ j≤k

is not a blue edge in G. In this case σ(i + k + 1) is a true neighbor of at least

one of {σ(i + 2), . . . , σ(i + k)}, i.e., choose σ(i + k + 1) ∈ ∪2≤ j≤kNx∗(i + j). The

number of choices is at most 2k(k − 1).

(b) Let ξt = 1 and specify σ(i + k + 1) such that all of {(σ(i + j), σ(i + k + 1))}2≤ j≤k

are blue edges in G. Combined with (σ(i + 1), σ(i + k + 1)), in this case the

value of σ(i + k + 1) determines k blue edges that have not appeared in E(i−1)
blue .

Here σ(i + k + 1) can choose from at most |V(G)| ≤ 2∆ vertices.

... ...

Figure 4.7: Case 3: σ(i+1) is attached to some red edge(s) and is not already balanced at step
i. In the figure σ(i + 1) has red degree 2 and blue degree 1. Therefore (σ(i + 1), σ(i + k + 1))
must appear G as a blue edge.

Repeat this process until |E(i)
blue| = ∆. In total we would encounter case 3b) at most

b∆/kc times because k blue edges get included in the updated blue edge set each time. Also,

case 2) and case 3a) combined can occur at most 2∆ times, because they only occur when

σ(i + 1) ∈ V(G) (this also guarantees that the ξ sequence of of length at most 2∆). Overall

after step 2, the total number of ways to specify the difference graph is at most

∑
ξ∈{0,1}2∆

(2k(k − 1))2∆(2∆)∆/k

≤
(
8k2

)2∆
∆∆/k.
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Combined with the cardinality bounds from step 1 and step 2, we have

|X∆(Ered)| ≤ 2(4k)2∆ · (8k2)2∆∆∆/k = 2(32k3)2∆∆∆/k.

�

Finally, Lemma 4.1 follows from combining 4.3 and 4.4:

|X∆| ≤ (96k2)∆

(
kn
b∆/2c

)
· 2(32k3)2∆∆∆/k ≤ 2

(
Ck17n

)∆/2

for a universal constant C > 0.
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